Balance Functions: A Signal of Late-Stage Hadronization
Narrow distribution in Qy signals late production of bb pairs. *a therm.*

- Many pairs created dur.

\[\approx \]

0.5 \text{ fm/c.}

Hadrons appear at \(t \approx \)

\(\\approx \)

Hadronization at 5-

\(\\approx \)

\(\\approx \)

\(\\approx \)

Suppose one could identify balancing charges? (E.g., \(K^+, K^- \).)

Motivation

Balance Functions: A Signal of Late-Stage Hadronization
During hadronization, quarks should make $\approx I$ hadron due to entropy conservation.

At fixed L, each quark should make $\approx J$ hadron due to entropy conservation.

At fixed L, each gluon should make $\approx K$ hadrons.

I. Gluons \rightarrow Hadrons.

2. Quarks \rightarrow Hadrons.

(e.g. DCC) Probably a small fraction of particile creation.

Each hadron contains at least two quarks, so number of quarks should more than double during hadronization.

$\nabla S > 0$.

J to keep

Coallescing quark gas would require rise in ∇S.
or to specific charges, e.g. (all antibaryons)/(all baryons).

Can be applied to specific particle/antiparticle pairs, e.g. + \rightarrow -,

2. \(z_{d} \) refers to relative rapidity.

1. \(d_{1} \) is anywhere in detector.

Common binning choice:

\[
\frac{(d_{1}', n)}{(z_{d}, q)} = (d_{1}, n) \cdot \frac{(z_{d}, q)}{d}
\]

Here \((d_{1} | z_{d}, q) \) is the conditional probability.

\[
\{ (d_{1}', n + |z_{d}', n +) d - (d_{1}, n + |z_{d}, n +) d + (d_{1}', n - |z_{d}', n -) d - (d_{1}, n - |z_{d}, n -) d \} / z_{d} \equiv (d_{1} | z_{d}) B_{z_{d}}
\]

Charge with momentum \(z_{d} \) describe the probability of seeing a particle or opposite

Given the existence of a particle with momentum \(d_{1} \), balance

What are Balance Functions?

Balance Functions: A Signal of Late-Stage Hadronization
May be analyzed event-by-event.

Class, e.g. analyze only K^+K^-, e.g. analyze only K^+K^-. Normalization reduced for finite ac-

Norm for both cases:

$$I = \left(\frac{d}{d\theta} B \right) \sum_{\Delta\theta}$$

If $\Delta\theta$ refers to all +/- particles:

$\sum_{\Delta\theta}$ refers to unity.

Properties of Balance Functions

Balance Functions: A Signal of Late-Stage Hadronization

\(\mathbf{B}(\Delta\theta) \)
10^6 events makes good balance function.

And \(v^+ + K^- \) give similar errors.

Error \(\propto 1/N_{\text{events}} \) independent of \(N \).

Denominator also increases \(\propto N \).

Statistical error for numerator \(\propto \sqrt{N} \).

\[
\frac{(1d', q_N)}{(2d', q_1)} = (1d', q_2d', q_d)
\]
Thanks to T. Sjöstrand for references!

- JETSET fits data.
- Several pairs analyzed: e.g. AV.
- M. Althoff et al., ZPC 17 (1983) 5.
- R. Brandelik et al., PLB 100 (1981) 357.

Similar analyses performed with:

Balance Functions From Jets
Balance Functions: A Signal of Late-Stage Hadronization
(B\nabla y) provides signal of late stage hadronization.

\[\frac{1}{Z} = \sqrt{L} \]

\[\langle p/p_0 \rangle_{\text{initial}} \approx \langle f/N \rangle \]

\[\frac{L}{W} \approx 2 \]

I. Temperature is lower, hadronization for two reasons:

2. High initial p/p_0 separates early-produced pairs through diffusion.

Relation to Hadronization Time

Balance Functions: A Signal of Late-Stage Hadronization
greater sensitivity. Heavier particles provide $B(\gamma)$ determined by T/m. Rapidity y. Pairs generated thermally at $\gamma = y$ with same collective u. Collective velocity: $\beta = \tanh \left(t/z \right)$. Position: $z = \tanh \left(t/z \right)$. Time: $\tau = \tanh \left(t/z \right)$. Bjorken 1-d expansion: Thermal Model.
\[
\left(u_0 \phi + \frac{2 u_0 \phi \gamma_{\text{therm}}}{\sqrt{2}} \right)_z = 2 u_0 \phi
\]

- Larger for small \(t_0 \).
- \(z \cdot t = t_0 \) (no collisions)
- \(\frac{1}{t} = 0 \) (coll. rate \(\propto \))
- No diffusion when

\[
\left(\frac{u_0 \phi}{\sqrt{2}} \right) z / \ln \frac{z / \phi}{\ln \frac{z / \phi}{\ln \frac{z / \phi}{\ln \frac{z / \phi}{\ln \frac{z / \phi}}}}}
\]

Solution:

\[
\frac{(\phi + u_0)}{\phi + t_0} = \frac{\phi}{t_0}
\]

Diffusion Eq:

\[
\left(u_0, \psi \right) f \frac{\phi + u_0 + \frac{1}{\sqrt{2}} \theta}{\phi + t_0} = \left(u_0, \psi \right) f \frac{\phi + \frac{1}{\sqrt{2}} \theta}{\psi}
\]

Diffusion: An Analytic Picture

Balance Functions: A Signal of Late-Stage Hadronization
Collisions/Annihilations Magnify Sensitivity to Creation Time

Procedure:
1. Generate pair thermally at $T_0 = 0$, $U = 0$
2. Follow straight-line trajectory
3. Perform N_{coll} collisions
4. Readjust momenta to local domain in $1/T$
 - thermal conditions
 - rises between collisions
 - $T = 225 - 7.5(T - 1)$, $T \rightarrow 15$
 - Model by convoluting
 - Annihilations:

 $$B(\Delta y) = \frac{f \cdot 15}{T_0}$$

 $$T = 225 - 7.5(T - 1)$$

 $$T \rightarrow 15$$

Collisions and Annihilations: A Simple Model
Balance Functions: A Signal of Late-Stage Hadronization
Even pions become sensitive to hadronization time:

\[N_{\text{coll}} \sim 2 \]

If \(t_0 \approx 9 \text{ fm/c} \),

\[N_{\text{coll}} \sim 6 \]

If \(t_0 \approx 1 \text{ fm/c} \).

Collisions Model Summary

Balance Functions: A Signal of Late-Stage Hadronization
Conclusions

Balance Functions: A Signal of Late-Stage Hadronization

- Strangeness/Antistrangeness
- a long-lived GP
- Provide clear signal of event-by-event production as function of \(t \)
- Gating on \(t \) allows one to study production issues can be studied.

PyTHIA

\(\gamma = 9, t = 165 \)

\(\gamma = 1, t = 225 \)
Most jet energy loss calculations are misguided.

\[\Box / \Box \]

\(\text{QGP explanations of } J / \gamma \text{ are misguided.} \)

Most jet energy loss calculations are misguided.

\(\text{QGP explanations of strong energy enhancement are wrong.} \)

\(\text{Most explanations of strange enhancement are wrong.} \)

rate particles (unless temperature jumped at hadronization).

\(\text{Quarks and antiquarks did not contribute to entropy for a substantial time.} \)

\(\text{Gluonic modes did not contribute to entropy for a substantial time.} \)

\(B \text{ if } A > d d \text{ balance functions appear identical,} \)

very early times.

\(\text{Mean free paths of partons were anomalously short during} \)

\(\text{Mean free paths of partons were anomalously short during} \)

\(\text{Large numbers of new charges were created late in the react-} \)

\(\text{Large numbers of new charges were created late in the react-} \)

near \(\Delta y \approx 0 \text{, characteristic of } J \text{, \(J \approx 165 \text{ MeV, then either} \)} \)

\(\text{near } \Delta y \approx 0 \text{, characteristic of } J \text{, \(J \approx 165 \text{ MeV, then either} \)} \)

\(\text{If measured balance functions have significant extra strength} \)

For example,

\(\text{Far reaching implications} \)

\(\text{Balance Functions: } A \text{ Signal of Late-Stage Hadronization} \)