
Norman, Benjamin E., Ph.D., August, 2003 NUCLEAR PHYSICS

HIGH PT CHARGED KAON PRODUCTION IN

√
SNN = 200 GEV AU-AU COLLISIONS AT RHIC (109 pp.)

Director of Dissertation: Spyridon Margetis

Relativistic heavy-ion collisions compress nuclei to states of extremely high tem-

perature and density. Under these conditions, phenomenological models as well as

Lattice QCD calculations predict a phase transition in nuclear matter, in which quarks

and gluons are no longer bound in hadrons but instead can move freely inside the

interaction volume. This transition would be accompanied by a restoration of chiral

symmetry, and the resulting state is called Quark Gluon Plasma (QGP). The obser-

vation of this phase transition and the study of the dynamics and properties of the

deconfined phase have important consequences, both for the understanding of QCD

and for cosmology, as it recreates conditions that existed for the universe as a whole

some 10 µs after the Big Bang.

Charged Kaons can provide signals of the formation of a QGP. First, they cary a

large fraction of the strange quark content of the hadrons produced in the collision.

The amount of strangeness can probe the degree of chemical equilibrium in the system.

Chemical equilibrium may occur in a QGP or a normal hadronic system, but it occurs

much more quickly in a QGP. Another benefit of measuring charged Kaons is that they

provide identified spectra at high transverse momentum. We observe a suppression of

high pT charged Kaons in central collisions relative to peripheral. This suppression has

a number of sources, one of which may be partonic energy loss in a color deconfined



medium (QGP).

Presented in this Dissertation is a measurement of the charged Kaon spectra in

√
sNN = 200 GeV Au-Au collisions at the Relativistic Heavy Ion Collider during

2001. Our data set is about 3 million “central” events and 3 million “minimum bias”

events. Spectra are presented out to transverse momenta of 4 GeV/c, and the ratio

K−/K+ is presented as a function of collision centrality and rapidity. For the most

central collisions, the charged Kaon yield ((K− + K+)/2) at midrapidity is dN/dy =

55. For comparison this value in 130 GeV collisions was dN/dy = 50.

The technique used in this analysis to identify charged Kaons is the topological

reconstruction of their one-prong decays: e.g. K± → µ± + νµ (63.5%) or K± →

π±+π0 (21.2%). The main tracking device in the STAR detector is a Time Projection

Chamber (TPC), which is a cylindrical ionization chamber 2meters in radius and

4.5meters long having pad readouts at the endcaps. This allows 3D reconstruction

of charged particle trajectories.

Our reconstruction technique is very similar to traditional ’V0’-reconstruction

which searches for K0
S and Lambda decays by combining pairs of tracks to look for a

common secondary vertex. Since we cannot observe the neutral daughter of the decay

in the STAR TPC, the decay appears as a ’kink’ on the original track. To avoid large

combinatorial background, we restrict our analysis to the densely instrumented outer

section of the TPC. We also apply geometrical cuts to get our candidates. Our

background is due to pion decays, pure combinatorics, and other minor sources. The

pion decays are rejected using kinematical constraints on the decay. The remaining

background after all cuts is about 10%.
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Chapter 1

Introduction

The purpose of the RHIC facility is to provide an environment where various ex-

periments, such as STAR, may probe the fundamental interactions of the constituents

of nuclear matter. In the standard model, hadronic matter is composed of massive

quarks which interact through the exchange of massless gluons.

1.1 The Color Interaction

Quarks are spin 1/2 fermions with electromagnetic charge +2/3 or -1/3. In ad-

dition, they have flavor and color degrees of freedom. Gluons also have color, and

it is this degree of freedom that corresponds to the strong nuclear force. The domi-

nant theory to describe this interaction is Quantum ChromoDynamics (QCD), where

chromo refers to the color interaction.

Unlike gravity, electromagnetism, and the weak nuclear force, the coupling con-

stant for the color force increases as the separation between quarks grows. In fact, it

can be shown through detailed simulation on a discreet lattice of space-time (lattice

QCD) that the effective interaction is approximately linear with the separation. [16]

It is easily shown that this behavior makes deconfinement of single quarks impossi-

ble under normal conditions. As two quarks are separated, it becomes energetically

more favorable to form a quark-antiquark pair from the vacuum than to increase the

separation of the original quarks. Under normal pressures and densities, quarks are

thought to only exist as color singlets such as 3-(anti)quark states called (anti)baryons

1
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and quark-antiquark states called mesons.

1.2 Deconfinement

To fully calculate the effect of the strong nuclear force requires the summation

of an infinite number of integrals, each containing a different power of the coupling

constant, αs. These sums are impossible to calculate to a good approximation when

αs is not small. Since the QCD coupling between two quarks decreases with decreasing

distance, however, one may discard higher terms in αs at very short distances. This

regime of very low coupling strength is called asymptotic freedom and corresponds

to high momentum transfers. Perturbative QCD describes the physics where the

truncation of the full sum is a good approximation. Unfortunately, however, the

coupling in nucleons – the only stable states of matter available to the experimentalist

– is not small enough to permit a perturbative treatment.

One very simple way of dealing with the nonperturbative nature of a colored

system is the MIT Bag Model. This model consists of quarks and massless gluons in

a “bag”. Inside the bag, the quarks are massless. Outside, they are infinitely massive,

thus the bag provides a boundary for the quarks. The kinetic pressure from the quarks

thus contained is balanced by a phenomenological bag constant, which represents an

external pressure on the bag. The bag constant is a neat way of accounting for all

the nonperturbative effects.

In this simple model, one sees that the contained quarks could break free of the

bag if either their energy increased (kinetic pressure) or more quarks were present

in the bag (Pauli pressure). Eventually, the internal pressure would exceed the bag

pressure, and the quarks would be deconfined.
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1.3 Chiral Symmetry

The bare or current masses of quarks are those which appear explicitly in the QCD

Lagrangian. The current masses of three lightest quarks are small compared to the

mass of the lightest baryon (mu ' 4 MeV/c2, md ' 7 MeV/c2, ms ' 150 MeV/c2 �

mp ' 1 GeV/c2). Chiral symmetry corresponds to the conservation of helicity (the

projection of a particle’s spin on to its direction of motion); helicity is definite for

massless particles. We can say that chiral symmetry is explicitly broken by the mass

term in the Lagrangian, but that it is still an approximate symmetry because the

masses are small compared to baryons. If we let the current masses vanish, then

chiral symmetry is restored to the Lagrangian. This is an SU(3)L×SU(3)R symmetry

because the now-massless quarks must have definite helicity, and the left- and right-

handed quarks transform independently under flavor rotation.

Even assuming zero mass for the light quarks, though, one runs into problems

at low energies. [17] Consider the vacuum at low temperature. Even a vacuum

totally devoid of matter will have fluctuations whereby a quark-antiquark pair may be

created, so long as that creation does not violate the uncertainty principle. If such a qq̄

pair is to be formed from the vacuum at a separation r, the quark and antiquark must

have a relative momentum (and kinetic energy) of about 1/r. (Here we use natural

units and apply the momentum-position formulation of the uncertainty principle.)

At small r, the potential from the color field has a Coulomb form −4παs/r, where

αs goes roughly as 1/ln( 1
r
). We should define what is meant by small at this point.

The characteristic momentum scale of QCD is Λqcd ' 200 MeV. This corresponds

to a length scale r0 of about 1 fm (~c ' 197 MeV fm = 1 in natural units). We

see that the potential energy will be overshadowed by the kinetic energy due to the
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logarithmic factor, and so the total energy is positive for very low r. At larger r,

the potential is approximately proportional to r, and so the total energy there is also

positive. At some point, near r0, the energy is minimized and can be shown to be

negative through detailed calculation.

In summary, the empty vacuum is not the most energetically favorable configura-

tion. It is preferred to have qq̄ pairs created at a distance r0 than to have a complete

void. The QCD “vacuum”, then, actually refers to a random distribution of color

charge pairs. Another way this is often stated is that the expectation value of the

quark condensate, < q̄q > is nonzero. One can now examine how this affects chi-

rality. If a left-handed test quark is placed in the vacuum, it may annihilate with

a left-handed antiquark that was produced in tandem with a right-handed quark,

its partner as described above. What will remain is the right-handed quark, and it

appears as if a quark changed its helicity. This implies a mass, and so we encounter

dynamical chiral symmetry breaking. Even if the light quarks did not have explicit

masses appearing in the Lagrangian, they acquire a dynamical contribution to the

mass that spontaneously breaks chiral symmetry. This results in a constituent mass

of about 360 MeV for up and down quarks, and 540 MeV for strange quarks.

At higher temperatures, however, the kinetic energy of these quark-antiquark pairs

is increased. There will be a critical temperature where the total energy of the pair

is always positive, and the existence of the pair will not be energetically favorable.

This restores chiral symmetry as the < q̄q > disappears.

1.4 Quark-Gluon Plasma

The term Quark-Gluon Plasma (QGP) refers to a phase of deconfined quarks and

gluons. This can be accomplished at very high baryon density, temperature, or both.
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Figure 1.1: Phase diagram of nuclear matter

The phase diagram of nuclear matter is shown in Figure 1.1. The temperature, T,

is shown on the vertical axis, and the baryon density, ρB, is shown on the horizontal

axis. The latter reflects the net baryon density of the system.

The phase transition to deconfined quarks and gluons is expected to be accompa-

nied by a restoration of chiral symmetry. This can be seen in the simple qualitative

argument above for the high temperature, low baryon density region. The QGP would

be a perturbative QCD system, and color charges would be free to move through it.

[15]
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In an Au-Au collision at RHIC energies (
√

sNN = 200 GeV), it is theorized that

gluon interactions would dominate at early times. [2] A gluon-rich QGP may form in

the hot, dense interaction region. We can see the evolution of the collision in Figure

1.2. The QGP could reach a chemical equilibrium between the different quark flavors,

but this is not required. After some time, a phase transition back to hadronic matter

occurs. As the hadron gas expands and cools, the chemical balance of the particles

is effectively fixed because inelastic collisions stop. This is referred to as chemical

freeze-out, and is thought to occur about 160 - 170 MeV. At some later time, the

particles separate to the point where they no longer interact even elastically, and the

system is said to undergo thermal freeze-out. This is around 120 MeV.

1.5 Probing the QGP

The mysteries of the early state of the collision (before chemical and thermal

freeze-out) are well hidden from the experimentalist. The most basic tools available,

such as total yields and momentum spectra, provide a snapshot of the system at

freeze-out. In order to gain insight into the nature of the system before that time, we

must use more subtle probes. [9] Such probes almost always involve the study of high

momentum particles, because the early stage of the collision is dominated by hard

scattering of quarks and gluons. STAR is equipped to study high pT photons and

charged particles. Jets and leading particles are of particular interest because they

may be sensitive to differences in energy loss between excited hadronic matter and a

QGP. The size and duration of the early state may be inferred from Hanbury-Brown

and Twiss (HBT) interferometry. This technique originated in astrophysics but is can

be applied to heavy ion collisions by measuring the correlation between like particles.

The chemical freeze-out conditions may be determined by examining the strangeness
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Figure 1.2: Space-time evolution of a heavy ion collision.



8

content of the final state particles. The relative strangeness content of these particles

reflects the degree of chemical equilibration that occurred in the early stage. Simi-

larly, the conditions at thermal freeze-out can be characterized by the bulk properties

of the spectra (common velocity, thermal parameters, etc.).

1.6 Strangeness

Strangeness enhancement has long been heralded as a signal for QGP production.

[8] Clearly, the valence strangeness content of normal nuclear matter is zero. When

normal nuclear matter is collided at high energy, there are processes which produce

particles carrying valence strangeness quarks. Pions, being the lightest mesons, are

produced copiously in such collisions. This leads the way to reactions such as π0+p →

K+ +Λ. This associated production occurs only for K+ because it receives its valence

u quark from the initial particle states. K− is not made in such a reaction, because

its valence d̄ antiquark is not found in the initial state. [7] The other source of strange

particles in a hadronic collision is pair production, where, for example, K± pairs are

produced. We shall focus on the charged Kaons for this discussion, because they are

the lightest (and thus most easily produced) strange hadrons and carry the majority of

the strangeness content of the system. The charged Kaons, in particular, are directly

observed in the STAR TPC, unlike the K0
S and K0

L.

We see, then, that there are two mechanisms for creating strange particles in

a nuclear collision that do not require QGP formation. The relative abundance of

strange particles, however, may be greatly enhanced if the source is a QGP. Clearly,

in a deconfined medium, it will only be necessary to create ss̄ pairs instead of pairs

of hadrons; the energy deficit for the former is smaller. Also, the restoration of chiral

symmetry will reduce the effective masses of the quark to their “bare” masses, making



9

ss̄ production even more likely.

The degree of relative strangeness production is influenced by two factors, tem-

perature and baryon density. If the temperature of the system is high, there is more

energy available for producing the heavier pairs of strange particles. Increasing baryon

density can also increase relative strangeness abundance. As the density of u and d

quarks is high, Fermi exclusion requires that new u and d quarks be formed at higher

energy levels than the ground state. This makes it energetically favorable to produce

ground state s quarks instead.

In heavy ion collisions, we see that these two factors conflict. Higher collision

energies mean a higher temperature for the produced particles. On the other hand,

it has been observed that higher collision energies result in a decrease of net baryon

content as the baryon number from the incoming nuclei is boosted farther away from

midrapidity. The net effect of this balance is that the maximum degree of strangeness

enhancement is reached in some moderate range of temperature and baryon density. A

concrete measurement of strangeness enhancement in the final state is the Wrobleski

factor defined by

(1.1) λs ≡
2 < ss̄ >

< uū > + < dd̄ >

. Figure 1.3 shows a plot of the T - µB plane with curves of constant λs. [6]

Also shown is the chemical freeze-out curve at < E > / < N >= 1 GeV. No matter

what energy density the system may have attained at earlier time, this curve should

describe it reasonably well as it cools and inelastic scattering halts. Notice that the

maximum Wrobleski factor along the freeze-out curve is at moderate temperature and

baryon density. At the highest baryon density or temperature, the relative strangeness

content is less than maximum. We shall see this clearly in the Kaon to Pion ratio as
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presented in Chapter 5.

1.7 Nuclear Modification

One purpose of colliding relativistic heavy ions is to create a high energy density

over an extended region of space. While such collisions accomplish this goal very

well, the dynamics of nucleus-nucleus (AA) collisions are much more complex than

nucleon-nucleon (NN) collisions. One can expect modification of particle momentum

spectra and bulk dynamics that goes beyond a simple superposition of NN collisions.

Mixed in with these nuclear effects is the promise of signals of QGP formation.

In the case that a QGP is formed, partons which undergo hard scattering in

the initial collision (and would fragment into high momentum hadrons) are subject

to energy loss in the colored plasma. Both radiative energy loss (bremsstrahlung)

and elastic scattering would contribute, but it is believed that the former dominates.

[5] Furthermore, hard scattered gluons would lose more energy than hard scattered

quarks in a colored medium due their stronger interaction with that medium. This

partonic energy loss would manifest itself as a suppression of leading hadrons in the

final spectra, relative to a collision where no QGP was formed (like NN). Leading

hadrons are high momentum final state particles, which carry a significant portion of

the momentum from a hard-scattered parton.

As mentioned above, an AA collision has complex dynamics that may hide the

partonic energy loss signature of QGP formation. One such effect is nuclear shadow-

ing. This refers to the modification of parton distribution functions within nucleons

that are contained in a nucleus. Such a change in the parton momentum distribution

will clearly change the hadronic momentum spectra to some degree. Also important

is the Cronin effect [4], a term that is used to describe the observed redistribution of
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cross section from one pT range to another in pA relative to pp collisions. Possible

physical causes for this effect include broadening of the momentum spectra due to

initial state multiple scattering. This broadening of the spectra causes an suppression

relative to NN at lower pT and an enhancement at higher pT. These factors must be

considered carefully in the interpretation of high pT hadron suppression in AA data.

1.8 Summary

One of the main motivations of the experiments at the RHIC facility is the obser-

vation and subsequent study of a new state of nuclear matter, the QGP. The study

of this new state could significantly reinforce the validity of QCD and the standard

model of fundamental particles. The measurement of charged Kaons from decay

topology provides the potential for examining various signatures of such a plasma,

including strangeness content and high pT hadron suppression.



Chapter 2

The STAR Experiment

The Solenoidal Tracker At RHIC (STAR) experiment is one of two large experi-

ments at the Relativistic Heavy Ion Collider (RHIC) facility at Brookhaven National

Lab (BNL) in Upton, New York. RHIC has 6 experimental sites, 4 of which are occu-

pied by STAR, PHENIX, and the two smaller experiments, BRAHMS and PHOBOS.

A perspective view of the STAR experiment is shown in Figure 2.1.

2.1 RHIC

RHIC accelerates heavy ions through several stages in order to deliver them to

the experimental sites. The Tandem Van De Graff, AGS Booster, AGS, and RHIC

ring are all crucial for producing high energy heavy ions (up to 100 GeV/u).

2.1.1 Tandem Van De Graff Generator

Heavy ions are produced in the Tandem Van De Graff generator facility. One

of the Tandem generators is dedicated to accelerated ion production for RHIC. The

input to the Tandem is an ion source such as a high temperature gold filament, which

would produce Au1−. The Tandem, which develops a 15.5 MV electrostatic potential,

earns its nomenclature from the fact that it accelerates ions before and after passing

them through a stripper foil, which removes electrons from the incoming ions. The

ions coming out of the Tandem have an energy of 1 MeV/u. Gold beams leaving the

Tandem consist of Au12+. [18]

13
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Figure 2.1: Perspective view of STAR experimental apparatus

2.1.2 AGS Booster

The next stage in the acceleration is the AGS Booster, which accelerates ions com-

ing along the Tandem-to-Booster (TtB) line from the Tandem before delivering them

to the Alternating Gradient Synchrotron (AGS). The TtB includes another stripper

foil to produce Au31+ for injection into the Booster. The Booster is a synchrotron

(which accelerates charged particles in a circular path by increasing both the mag-

netic field intensity and the electric field frequency) with a circumference of 202 m,

1/4 that of the AGS.

The booster is required because it has superior vacuum to the AGS. This is im-

portant because an ion beam suffers losses from two effects: electron capture and

electron stripping. [20] Electron capture is the dominant effect at low energy, and

electron stripping is more important at higher energies. When low energy ions are
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Figure 2.2: Various facilities for accelerating ions at RHIC.
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injected into the Booster, the good vacuum (10−11 Torr) prevents significant beam

loss due to electron capture from residual gas. By the time ions leave the Booster,

they are in the energy regime where electron stripping dominates. On the transfer

line from the Booster to the AGS, they are further stripped of their electrons. Gold,

for example, is reduced to Au77+, leaving only 2 electrons. High charge states have

lower potential for electron stripping, so the weaker vacuum (10−7 Torr) of the AGS

still allows good transmission of the ion beam. Without the Booster, the AGS would

not be usable for ions with an atomic mass greater than 28 (silicon); it would loose too

much of the incident low energy beam to electron capture. Ions exiting the booster

have momenta of 100 MeV/u. [18]

2.1.3 Alternating Gradient Synchrotron

The AGS itself is a synchrotron with an 807 m circumference. It, like the Booster,

uses alternating quadrupole magnets to focus the beam. These quadrupoles cause

a gradient in the magnetic field in the plane perpendicular to the beam direction.

The net transverse magnetic field is zero at the center, so ions which are on the

ideal circular path in the synchrotron are not diverted. Ions which have drifted

away from the center are focused in an ellipse by the quadrupole. The subsequent

quadrupole magnet is rotated by 90 degrees so that the beam is compressed along the

other transverse axis. This strong (alternating) focusing technique earns the AGS its

name. The AGS accelerates ions up to 9 GeV/u . [18]

2.1.4 RHIC Ring

The beam next passes through AGS To RHIC (ATR) transfer line, where a filter

foil strips Gold of its final two electrons to produce Au79+. At this point, the ion beam
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is split into bunches by switching magnets. The bunches are alternately sent down the

two RHIC rings (“blue” and “yellow”) in opposite directions. The final acceleration

in the RHIC rings is 100 GeV/u for a total
√

sNN of 200 GeV in a collision. [18]

The collider has a design luminosity of L = 2 × 1026 cm−2 s−1 for Au-Au collisions

at this maximum energy. The circumference of the RHIC ring is 3834 m, which is

chosen because it is 19/4 times that of the AGS. That is the ratio of the number of

ion bunches desired in each RHIC ring (57) relative to the number in the AGS (12).

This facilitates injection of ions from the AGS into the RHIC rings.

In RHIC, ion bunches are steered by magnets to cross at the 6 interaction points

every 220 ns. This corresponds to a crossing rate of 4.55 MHz. Each bunch contains

about 7.5 × 108 ions. The luminosity is the flux of particle pairs, i.e., the number of

particle crossings per unit area per unit time and is equivalent to

(2.1) L = f
N1N2

A
,

where f is the frequency of bunch crossing, N1 and N2 are the number of particles

in each intersecting bunch, and A is the transverse area of the interaction region. So

the design luminosity above corresponds to a interaction area of about A = (4.55 ×

106 s−1)(7.5×108)2/(2×1026 cm−2 s−1) = 0.013 cm2, or a diameter of about 1.3 mm.

The total interaction rate is LσNN , where σNN , the total Au-Au cross section, is about

7.2 barn. [26] So the interaction rate is about (2×1026 cm−2 s−1)(7.2×10−24 cm2) =

1440 Hz. [25]

2.2 STAR Magnet

Momentum determination in the STAR Time Projection Chamber (TPC) requires

a strong, uniform magnetic field. The magnet strength was designed with a balance
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between raw field strength and homogeneity. A strong field is necessary to resolve

the curvature (i.e., transverse momentum) of high momentum tracks, but the position

resolution is sensitive to inhomogeneity in the field.

The magnet may produce a very uniform field along the z axis over the range

0.25 < |Bz| < 0.5 T. The non-uniformity in the radial and azimuthal directions are

defined by |βr/φ| ≡ |
∫ z

z′=210cm
(Br/φ/Bz′)dz′|. Over the operating range above, the

magnet maintains a uniformity |βr| ≤ 2.3 mm and |βφ| ≤ 1.0 mm over the entire

TPC volume. Weighing in at 1100 tons, the magnet also provides support for all

other elements of the STAR detector. To maintain the field quality above, variations

in the magnet structure are less than 1 mm.

One can see the structure of the magnet in Figure 2.3. It consists of 10 Main coils

and two Space Trim coils, all of which are connected in series. They draw a current

of more than 5000 A at the maximum field (0.5 T). The coils have an inner diameter

of 5.3 m and an outer diameter of 6 m. The axial thickness of the Main coils is 0.45

m, and the Space Trim coils measure 0.23 m. To help maintain field uniformity, the

Pole-tips also contain Trim Coils, which draw a total of 1330 A at maximum field.

All magnet coils are made from rectangular aluminum, insulated with fiberglass and

epoxy.

The magnet is water-cooled, and the internal closed-loop cooling system moves

1200 GPM through the heat-exchangers, which are cooled by an external open-loop

system. The system must dissipate the 3.5 MW of power generated by the magnet

and keep it at the normal operating temperature of 29◦ C. [21]
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Figure 2.3: Section drawing of magnet steel and coil locations.
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2.3 Trigger and DAQ

The STAR Data AcQuisition (DAQ) electronics are capable of reading out entire

events (ion collisions) at the rate of 100 Hz. As seen above, the bunch crossing rate

is about 5 MHz, so some method of detecting events and deciding which ones to

read out from DAQ must be found. The actual Au-Au interaction rate is only about

1/3000 of the bunch crossing rate, so the first job of the trigger is to detect whether

an interaction occurred during a bunch crossing. This is done mainly in the Level 0,

1, and 2 (L0, L1, L2) triggers. These triggers get input from the “Fast Detectors”:

a Central Trigger Barrel (CTB) and two Zero Degree Calorimeters (East and West

ZDC). These detectors provide per-event information at the rate of 10 MHz, 5 orders

of magnitude faster than the “Slow Detectors”, which include tracking detectors such

as the Time Projection Chamber (TPC), the Silicon Vertex Tracker (SVT), and the

Ring Imaging CHerenkov detector (RICH).

The CTB consists of 4 cylindrical bands, each of which contain 60 scintillator slats.

(See Figure 2.4.) It surrounds the TPC at a radius of 2 m. It covers the full azimuthal

range and the pseudorapidity range −1 < η < 1. It serves to measure charged particle

multiplicity. The ZDCs, common to all RHIC experiments, are hadronic calorimeters

which use fiber optics to detect Cherenkov light from the core of the hadronic shower.

They are located 18 m away on either side of the interaction region and cover a small

solid angle at θ = 0 and θ = π. They are behind the dipole magnet, which steers the

two RHIC beams back into the ring from the interaction region. Thus, only neutral

particles (primarily neutrons) are detected in the calorimeters. Each ZDC has 3

modules, and both ZDC signals are summed to determine if an interaction occurred.

The ZDCs can be used to estimate the longitudinal position of the collision vertex by
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comparing the timing of the signals from the East and West modules.

These fast detectors provide information to the Trigger hardware every time a

bunch crossing occurs. The basic “Hadronic Minimum Bias” (minbias) trigger is an

L0 trigger that simply requires coincidence of signals in both the East and West ZDCs.

This is designed to collect as many events as possible while introducing little bias with

respect to centrality, etc. The “Central” trigger is also a fast L0 trigger; it is designed

to capture higher multiplicity events (i.e., more central collisions). It requires either

a high CTB count alone or high counts in the CTB and ZDCs. The option exists

because, for the most central collisions, few particles are produced at small polar

angle, and the ZDC signal is small. (See Figure 2.5.) The L0 trigger is programmed

to trigger on a given number of Central and Minbias events in accordance with the

data requirements of STAR. Once the conditions for an L0 trigger have been met,

the various slow detectors begin digitizing their data. This takes several milliseconds,

and during this time, the L1 and L2 triggers perform more comprehensive analysis of

the output from the fast detectors. More complicated selections may be made, and

the event may be aborted if it does not not meet the L1 and L2 trigger requirements.

This causes the slow detectors to stop digitizing and prepare for another L0 trigger.

[22]

The Level 3 (L3) trigger uses data from the slow detectors once it is digitized

and actually performs a fast reconstruction of the event. This means that the L3

trigger software turns the pixel information from the tracking detectors into particle

trajectory information, and ultimately particle identification (PID) data. It can then

accept or reject the event on more complicated triggers such as the position of the

interaction vertex, the particle multiplicity, or individual particle momenta. The L3
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Figure 2.4: Diagram of Central Trigger Barrel
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reconstruction allows the immediate display of events in the STAR control room. [23]

2.4 TPC

The Time Projection Chamber (TPC) is the main tracking detector in STAR. It

is the largest such detector in the world to date, having a diameter of 4 m and a

length of 4.2 m. It provides full tracking out to ± 1.8 units of pseudorapidity and can

identify particles with transverse momenta down to 100 MeV. As particles traverse

the P10 gas (90% Argon, 10% Methane) which fills it, they ionize gas molecules. The

central membrane of the TPC is held at -31 kV, and the endcaps are grounded; this

creates a very uniform longitudinal electric field. The electron from the ionized gas

molecule drifts down to the end of the TPC until it reaches the pad planes (see Figure

2.6). The 2 pad planes each consist of 12 sectors. Each sector has 45 rows of pads.

The sectors are divided into inner (60 < R < 127 cm) and outer (127 < R < 189 cm)

subsectors.

The pads are in fact MultiWire Proportional Chambers (MWPCs), as shown in

Figure 2.7. In normal operation, the drifting electron is accelerated toward the anode

wires until it has enough energy to ionize another gas molecule. Both electrons are

accelerated, ionizing more gas molecules, and so on. Near the 20 µm anode wires,

the electrons are subject to a very high electric field and are strongly accelerated.

This avalanche deposits charge on the anode wires when the electrons are grounded

out there. This charge induces a current in the pad below the wire; the induced

current is the raw data measured by the TPC. The benefit of the Argon in P10 gas

is that it is easily ionized. The Methane acts as a quencher. Gas molecules excited

by the drifting electrons may revert to a ground state, emitting an energetic photon.

Without a quencher, this photon would cause further ionizations in the TPC volume,
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Figure 2.6: The anode pad plane, 1 sector of 24 (12 east and 12 west)

leading to additional avalanches which were not caused by particles in the event.

An organic quencher is a highly efficient absorber of these photons, and it ensures

that the only avalanches come from primary electrons due to ionization by a particle

produced in the event. The innermost set of wires in the MWPC is the gating grid,

which keeps electrons from entering the avalanche region until the TPC is ready to

take data and keeps positive ions from the avalanches from drifting into the TPC

drift volume, where they could distort the precise electric field. An electron from a

primary ionization may have to drift as much as 2 m before reaching the pad plane

to be detected. The electric field in the drift volume must be as homogeneous as

possible.

These MWPCs operate in proportional mode, meaning that the gain is in a mod-

erate region where the charge deposited on the pad goes linearly with the magnitude
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of the ionization produced in the drift volume. That means that the total charge

deposited by an ionizing particle on the pad plane is proportional to the amount

of energy loss (dE/dx) it incurred while passing through the TPC. This quantity

depends mainly on the velocity of the particle (not the momentum), and so it can

be used with some success to differentiate particle species in the region where the

momentum does not greatly exceed the mass.

The TPC provides three dimensional data. The pad spacing along a row is 3.35

mm (Inner sector) or 6.75 mm (outer sector). The spacing of the padrows is 50
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mm (inner sector) or 20 mm (outer sector). Total density is limited by electronic

readout capability. The geometry above represents a balance between better energy

loss (dE/dx) information in the outer sector, and better space point resolution in the

inner sector. The high pad density along the inner sector padrows places a limitation

on the number of rows which can be served by the readout electronics; thus the

density of padrows is lower here. The z position is determined by the time the

primary electrons take to drift from the original ionization point. Data is recorded

in up to 512 “time buckets”, each corresponding to about 1 cm in z (based on the

drift velocity determined by the electric field). The spatial information can have

higher resolution than the spacing of pads or time buckets. One may fit a Gaussian

to adjacent pads or time buckets to find the center of the distribution. Resolution

along the padrow is about 0.4 mm in the inner sector and 0.6 mm in the outer sector.

That along the drift direction is 0.9 mm in the inner sector and 1.2 mm in the outer.

These are for particle trajectories which cross the padrow at right angles. Polar or

azimuthal inclination will increase the uncertainty in the drift and padrow directions,

respectively, because the distribution of charge at the anode planes will be spread out

over several pads or time buckets. The maximum resolution in the radial direction is

fixed at the padrow width because no finer position information is available. There

is an inherent uncertainty in position because of the diffusion of a cloud of electrons

produced by an ionizing particle as it drifts through the TPC to the pad plane. The

transverse diffusion is about 3.3 mm for electrons which drift the maximum 210 cm.

The longitudinal diffusion is about 5.2 mm. [27]
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2.5 SVT

The Silicon Vertex Tracker (SVT) is located near the beam line at mid-rapidity.

It is designed to improve the TPC tracking in several ways; it improves the primary

vertex resolution, track separation resolution, and energy loss measurement for par-

ticle identification. It also adds new capability such as the reconstruction of decays

of short-lived particles like strange and multi-strange baryons because it provides

secondary vertexing capability very close to the collision vertex. Being at a smaller

radius, it also allows the measurement of lower momentum particles by reconstructing

particle trajectories solely with the SVT.

The SVT consists of 3 concentric barrels, each covering approximately the same

pseudorapidity (-1 < η < 1). Each barrel has a number (8, 12, or 16 for barrels 1, 2,

and 3, respectively) of ladders, which extend in the axial direction, and each ladder

contains a number of Silicon Drift Detector (SDD) wafers (4, 6, or 7 for barrels 1,

2, or 3). Each 63 mm square SDD wafer is effectively a solid state drift chamber.

It is made of an n-type Silicon semiconductor 280 µm thick, and several p-type

cathode strips (located every 135 µm in the drift direction) are placed on the top

and bottom of each wafer. When negative voltage is applied to the cathodes, free

electrons caused by ionization from energetic particles passing through the wafer will

be attracted to n-type anodes at the edge of the wafers. The anodes are at a 250 µm

pitch (perpendicular to the drift direction). The negatively charged p-type cathodes

on the top and bottom surfaces constrain the electrons produced through ionization

to the center of the wafer.

The cathode pitch maintains a uniform electric field, allowing the determination

of position in the drift direction by a measurement of drift time. The overall position
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resolution of the SVT is 20 µm, much more precise than that of the TPC. [24]



Chapter 3

Event Reconstruction

As impressive as the data collection abilities of the STAR detector are, most

physics analysis requires a higher level of abstraction than the “raw” data provided

by the DAQ electronics. This process of event reconstruction takes the raw event and

condenses the ADC (Analog to Digital Conversion) hardware values into information

about the particles produced in the collision.

In STAR, this reconstruction software is invoked in a sequential arrangement

called a Chain. The Chain consists of several Makers; each Maker is an independent

software component which processes the event data. Subsequent Makers may (and

usually do) depend on information added to the event by previous Makers.

We will cover in depth the process for reconstruction within the main tracking

detector, the TPC. Many elements are similar when considering the SVT or FTPC,

but some differences exist due to different track density, detector orientations, and

readout capability.

3.1 Cluster Finding

Cluster finding is the process of grouping the raw event data into groups of ad-

jacent charge deposition. The module responsible is called TCL. This is done in the

TPC local X-Z plane, i.e. in the plane defined by the drift and padrow directions.

Clusters are formed by finding all adjacent non-zero ADC values in the padrow-drift

plane. These clusters of charge induced on the pads may be from the ionization track

30
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Figure 3.1: ADC values in the X-Z plane. TCL has found 3 separate clusters.

of one or more charged particles. See Figure 3.1.

3.2 Hit Finding

As mentioned, each X-Z cluster may have contain several “hits”, where each hit

corresponds to the charge from one particle’s ionization track crossing that padrow.

Hit finding consists of deconvoluting these clusters into individual hits and then find-

ing the center of the hit based on the charge distribution.

3.2.1 Deconvolution

First, a gross cut is done on the width of the cluster in X and Z. Even if a narrow

cluster contains multiple hits, it is unlikely that the deconvolution algorithm, which

is processor intensive, with be able to separate them. This first cut saves a great deal
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of CPU time.

Clusters having a sufficient spread in the padrow and time direction are subjected

to a mountain-finding search. Local maxima are identified, and the “valleys” between

these maxima are examined to determine if there is significant separation between the

two peaks. Figure 3.2 shows potential hits identified by the deconvolution routine.

After hits are identified, they are fit to a centroid in X to determine their centers.

Recall that the pad geometry is chosen so that the charge from one ionization trail will

be directed almost completely onto 3 pads per row. Assuming a Gaussian distribution,

the center can be arrived at analytically using the 3 largest pad ADC values:

(3.1) x =
σ2

2w
ln(

h3

h1
)

, where w is the pad pitch, h1,2,3 are the ADC counts on 3 adjacent pads, and the

width of the Gaussian is found by

(3.2) σ2 =
w2

ln(h2
2/(h1h3))

. The Z coordinate is found in a similar way, but the relationship between Z and

drift time (the quantity which the TPC actually records) is very sensitive to the drift

velocity in the TPC and the absolute zero of the timing information. This means that

great care must be taken to determine both the correct offset for the time coordinate,

as well as the scaling with Z (i.e., drift velocity). [27]

3.3 Global Tracking

Global tracking is the process of combining reconstructed hits into tracks, which

represent the path of a charged particle through the detector. A charged particle

that moves through a uniform magnetic field and suffers no energy loss will have a



33

Figure 3.2: The mountain-finding routine has identified 3 candidate hits.
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perfectly helical trajectory. The parameterization of this helix in STAR is defined

by the beginning of the helix in the transverse plane (x0, y0), the phase (Φ0), the

dip angle (λ), the sense of rotation (h) , and the curvature (k). The phase, Φ0, is

defined as the angle in the transverse plane of the helix starting point relative to the

helix center (xc, yc). The dip angle measures the deflection of a track from a purely

transverse trajectory and is defined by

(3.3) tan(λ) =
pz

pT

. The sense of rotation does not affect the shape of the helix, only the direction in

which the particle is moving (forward or back). The curvature (equal to the inverse

of the helix radius) is proportional to the ratio of the magnetic field to the track’s

transverse momentum:

(3.4) k = K
|qB|
pT

=
1

R

, where K is a constant depending on the units used. For B in Tesla, p/perp in

GeV/c, q in integer charge, and c in cm, we have K = 0.00299 GeV/c/(T cm). Using

these 6 parameters, the helix is described by these parametric equations in terms of

the path length s:

(3.5) x = x0 +
1

k
(cos(Φ0 − h k s cos(λ)) − cos(Φ0))

(3.6) y = y0 +
1

k
(sin(Φ0 − h k s cos(λ)) − sin(Φ0))

(3.7) z = z0 + s · sin(λ)

. Note that the quantity z0 is not a free parameter. It is specified completely by

the 6 independent parameters.
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Figure 3.3: The independent (and dependent) helix fit parameters.

To begin the process of tracking, a seed for the track must be found. The seed

is simply a short series of hits which lie close in solid angle. The most efficient place

to look for seeds is the outer padrows of each sector, where the hit density is lowest.

Track segments are then found starting with these seeds by recursively extending

each segment to collect new hits. After segment finding is done, the tracking software

attempts to merge any segments which are so close in phase space that they are

probably from the same particle. This helps eliminate so-called “split tracks”, which

result when 2 tracks are reconstructed for a single physical particle. The last step in

global tracking is to do a Kalman refit. This does not find tracks, only refines the

fit parameters using the Kalman method, which takes into account energy loss and

multiple scattering between each hit on the track and updates the track parameters

at each step.
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3.4 Vertex Finding

The tracks above are found simply by connecting points in the TPC. Those tracks

which originate from the collision vertex may be refined by determining the position

of the interaction point. This primary vertex (as opposed to “secondary” vertexes,

which are the result of particle decays or other isolated processes) is found using the

global tracks above. Each global track is extrapolated to the beam-line (the central

axis of the TPC), and the Z bin containing the maximum density of tracks is chosen

as a seed for the primary vertex.

Once the seed is found, an iterative process begins. The Distance of Closest

Approach (DCA) of each global track to the primary vertex candidate is calculated.

Tracks with DCA greater than a certain distance are eliminated, and the vertex

candidate is refined by minimizing the DCA of the remaining tracks. This process

converges quickly and is only repeated 3 times.

3.5 Primary Tracking

Once the primary vertex is known, tracks which are assumed to come from the

interaction point may be refined by including the vertex in the fit. Tracks that have

a DCA of more than 3 cm to the primary vertex do not go through a refit. This refit

also uses the Kalman method. Tracks whose quality measure (ξ2) deteriorate with

the inclusion of the primary vertex are removed from consideration. Those which

improve with its inclusion are kept as primary tracks, and their fit parameters are

updated accordingly.
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Figure 3.4: Particle identification through dE/dx.

3.6 Particle Identification Using dE/dx

As mentioned earlier, the energy deposited by a particle (as reflected by the num-

ber of ionizations it causes) in the TPC is dependent on the particle’s velocity. Since

a particle’s momentum is known well from tracking, one may plot the dE/dx, which

is proportional to the charge induced on the pad planes, as a function of particle mo-

mentum. Low momentum particles with different masses but the same momentum

will have different velocity, and so different particle species will show in bands on the

dE/dx vs momentum plot.
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Notice how in Figure 3.4 the lighter particles flatten out at much lower momenta.

The lighter the particle, the faster β approaches 1 for a given momentum. This gives

better dE/dx particle identification at high momentum for heavier particles. Pions

and Kaons may be identified up to momenta of about 600 MeV/c, while Protons may

be identified to 1.2 GeV/c .

3.7 Charged Kaon Identification Using Kinks

The relatively low momentum capability of the dE/dx identification of charged

Kaons is one of the principle reasons for exploring other PID methods. The focus

of this dissertation is on Kaons identified by their decay topology. The dominant

charged Kaon decays are K+ → µ+νµ (63.5%) and K+ → π+π0 (21.2%). Both of

these modes are characterized by a single-pronged decay topology (or “kink”) in the

TPC. The neutral daughter is not found, and the track appears to instantaneously

change direction. A kink candidate is shown in Figure 3.5.

As kink finding is a secondary vertex search, it must come after track finding in

the reconstruction chain. The kink finding Maker in the chain simply creates pairs of

tracks which meet at a vertex, with no physics cuts. Only the fiducial region 133 cm <

R < 179 cm is searched for kinks, because that is in the middle of the densely instru-

mented outer TPC sub-sectors. This dense space point information aids in pattern

recognition. First, all global tracks are searched for candidate parent and daughter

tracks that end or begin in the kink fiducial volume, respectively. A number of ge-

ometry cuts are chosen to maintain a balance between preserving signal and rejecting

background. To remain a parent candidate, a track must have a (3-dimensional) DCA

to the primary vertex of less than 2 cm. Daughter candidates, conversely, must have

a DCA of more than 2 cm. The charge of a candidate parent and its daughter must
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Figure 3.5: A “kink” or charged Kaon decay candidate.
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Fiducial volume ∈ (133 cm, 179 cm)
Parent DCA to event vertex > 2 cm
Daughter DCA to event vertex < 2 cm

Parent pT > 200 MeV/c
Daughter pT > 100 MeV/c
Daughter charge = Parent charge

XY distance between last parent and first daughter points < 14 cm
Z distance between last parent and first daughter points < 20 cm
Z distance between parent and daughter projections to kink vertex < 2 cm
Decay angle > 1·

Parent-daughter DCA < 0.5 cm

XY distance between kink vertex and last parent point < 14 cm
Z distance between kink vertex and last parent point < 20 cm
XY distance between kink vertex and first daughter point < 14 cm
Z distance between kink vertex and first daughter point < 20 cm

Table 3.1: Online reconstruction cuts for kink decays.

be the same, of course. The parent track must end within 14 cm in the transverse

plane and 20 cm in z of the beginning of the daughter. If these conditions are met,

a mathematical intersection (or solution of closest approach) is found between the

parent and daughter helices in the transverse plane. The extrapolated tracks must be

no more than 2 cm apart in z at this point. Next, the full 3D DCA between the tracks

is found; this must be no more than 0.5 cm. If so, the intersection point is considered

as a kink vertex candidate. The last point on the parent and the first point on the

daughter must each be within 14 cm in the transverse plane and 20 cm in z of this

newly found kink vertex. Finally, the angle between these two tracks must be greater

than 1◦. Tracking resolution below this angle calls into question whether there are

really two particles or one track that was split in reconstruction. For a summary of

these cuts, please see Table 3.7.



Chapter 4

Data Analysis

The kinks, or Kaon candidates, found during reconstruction are simply pairs of

tracks which appear to share a common terminus within some fiducial volume. These

kinks can come from three different sources. First, they may be actual one-pronged

charged Kaon decays (“signal”). Secondly, they may be from another real physical

process such as a Pion decay or inelastic hadronic scattering; we refer to this as “cor-

related background”. Lastly, they may not be tied to a physical process at all. This

last class includes the pairing of two random tracks, the splitting of one physical track

into two reconstructed tracks, and a few rarer cases. We refer to them collectively

as “combinatorial background”. In this chapter, we shall discuss the tools and tech-

niques used to eliminate the correlated and combinatorial background from the kink

population while preserving a maximum of Kaon signal.

4.1 Simulation

One of the most powerful tools in our workshop is STAR simulation software.

These packages allow the simulation of entire Au-Au collisions and estimate the re-

sponse of the STAR detector to those collisions. Such information is invaluable in

determining the composition of the background and finding ways to reduce it. It is

also necessary for the estimation of the detector efficiency (the percentage of original

yield which is reconstructed); no estimate could me made of actual particle yields (as

41



42

opposed to raw yields) without this feedback. One may also use the results of sim-

ulation to tune the reconstruction software, improving its efficiency. Simulation can

be depended on to do some things perfectly, such as reproducing the known lifetimes

of common particles. Other things, such as the net response of the STAR detector

to collisions, are much more complex and must be viewed as approximations. When

using simulation, it is important to constantly compare the results to data. Any

discrepancies indicate areas where simulation may not be trusted without question.

4.1.1 Simulation Tools

STAR simulation software may be broken down into event generators, which simu-

late the collision of heavy ions and the particles produced, material simulators, which

simulate the effect of the detector material on the passage of particles, and detector

response simulators, which simulate how the detector electronics respond to particle

signatures. A fourth tool used in simulation is the Association maker; it provides func-

tionality for comparing the input Monte Carlo (MC) particles and the reconstructed

tracks. These four elements are detailed in the following sections

HIJING

HIJING (Heavy Ion Jet INteraction Generator) is a Monte Carlo event generator

that is widely used in the study of high energy pp, pA, and AA collisions. It is based

on QCD-inspired models for multiple jet production and incorporates mechanisms

such as multiple mini-jet production, soft excitation, nuclear shadowing of parton

distribution functions, and jet interactions in dense hadronic matter. It has been

well tested against data from many high energy and heavy ion experiments and has

been chosen by STAR as its main event generator. HIJING is very well established
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in the community, and a discussion of its inner workings goes beyond the scope of

this dissertation. [28]

GEANT

GEANT is a software tool for 1) representing the materials used to construct

a detector system and 2) simulating the effect of this matter on particles as they

pass through it. For example, GEANT simulates energy loss due to ionization, the

effects of multiple Coulomb scattering, and hadronic scattering. The framework for

running GEANT in STAR is called GSTAR, and it includes a very detailed rendering

of all material in the STAR detector from the beam pipe to the EMC. Different

geometry libraries are available to describe the STAR detector at different stages of

its development based upon what subsystems were installed at the time. GEANT

can take events (i.e. a list of produced particles with their kinematic information)

from HIJING as input and propagate them through STAR. The input need not be a

full HIJING event; it may be a list of particles and 3-momenta from any source.

TPC Response Simulator (TRS)

TRS is the software used in STAR to simulate the response of the TPC to the

passage of charged particles. Once the trajectories of simulated particles are known

from GEANT, TRS takes over the simulation chain. The drifting of ionized electrons

from the gas down to the pad planes, showers near the anode wires, the response of the

pad plane, and more are simulated in this intricate package. Everything necessary to

generate the raw DAQ signals analogous to those produced in a real event is simulated.

The output of the simulation chain after TRS is equivalent to what is read out as a

raw event from the STAR detector, and this output may be passed to the standard
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reconstruction software for cluster finding, hit finding, and tracking.

Association

The data coming out of the reconstruction (“reco”) chain after simulation is richer

than that coming out of a real event. It still contains information on the MC particles

that were initially produced in the collision. It is very useful to draw relationships

between the input MC particles and the final reco tracks. This is done on the level

of hit comparison. The hits produced by a MC particle are known in TRS, where

those hits are initially constructed. If a reco track has a requisite number of hits

in common with a MC track, the two are “associated”; this step comes after track

finding/fitting in the reco chain. This association information is available to offline

analysis software.

The Association Maker also performs secondary vertex association, which is very

useful for kink analysis. If a reco kink’s parent track is associated with an MC track

whose daughter is associated with that same reco kink’s daughter track, then an

association is made between that reco kink and the MC vertex. That vertex could

represent signal or correlated background, but that is easily determined by checking

the MC process for the vertex and the identity of the MC parent.

4.1.2 Modes of operation

The simulation tools above may be used in different modes. First, they may be

used to simulate entire collisions. Secondly, they may be used to embed simulated

tracks (which have passed through GEANT and TRS) in a real event. The two

methods are appropriate for different studies, as discussed below
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MC Events

In this mode, entire ion collisions are simulated in HIJING and passed through

GEANT, TRS, the reco chain, and the association maker. This provides high statistics

of reconstructed particles with known identity. For kink analysis, this is important

when understanding the combinatorial and correlated backgrounds. Kinks which

are associated with MC Kaon decays are easily tagged as signal, those which are

associated with other MC vertexes are correlated background, and those which are

not associated with any MC vertex are pure combinatorial background.

Embedding

In embedding, one wishes to have the benefits of association between reco tracks

and MC particles, but in an environment as close as possible to a real STAR event.

It is a concern, for example, that efficiency might not be well reproduced in recon-

structing a full MC event from HIJING. The solution is to embed MC tracks into a

real STAR event. For kink analysis, for example, we can embed only charged Kaons

which decay in the fiducial volume. Furthermore, we can ask that the multiplicity

of these Kaons be a few percent of the total event multiplicity. This is much higher

than found in a real event, where charged Kaons make up about a tenth of a percent

of the total multiplicity, but it is not so high as to significantly affect the realistic

environment provided by the STAR event.

Embedding is particularly useful for studying efficiency and acceptance. These

are factors which represent what percentage of all produced charged Kaons we re-

construct. Acceptance is defined as the ratio of all charged Kaons decaying in the

fiducial volume to all charged Kaons which are produced in an event. In terms of



46

embedding, this is

(4.1) Acceptance ≡ # of MC Kaons decayed by GEANT in fiducial volume

# of MC Kaons given to GEANT as input

. This factor could, in theory, be calculated. It would require knowledge of the

lifetime distribution, which is well known, and an estimate of the effect of the inter-

sector boundaries on the acceptance. In practice, it is simpler and more accurate to

get this factor from embedding.

The efficiency factor is a measure of how well the STAR detector and software

are able to reconstruct particles which decay in the fiducial. It is the ratio of all

reconstructed Kaons to all Kaons decaying in the fiducial. In other words, it is

(4.2) Efficiency ≡ # of reconstructed MC Kaons passing kink analysis cuts

# of MC Kaons decayed by GEANT in fiducial volume

. The numerator counts only kinks which pass all the analysis cuts designed to

improve the signal to background ratio. These correction factors as found for the

kink analysis will be discussed in the following section.

A summary of the differences in the reconstruction software chain between data

and simulation are shown in Figure 4.1.

4.2 Corrections

The sample of Kaons we reconstruct with the kink method is very different than

the population produced in the collision. First, the STAR detector does not cover all

of space; this means that not all charged Kaons will decay within the fiducial volume

of the detector. This, as we mentioned above, is called acceptance. Secondly, not

all Kaons decaying in the fiducial are reconstructed; this is efficiency. Lastly, not all

kinks which pass the analysis cuts are really Kaons; they may be combinatorial or

correlated background.
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Particle List HIJING EventReal Event

Reconstruction (cluster, hit, track, vertex)

Association (hit, track, vertex)

Mixer

TRS

GEANT

Chain
EmbeddingData Chain MC Chain

Figure 4.1: The three main configurations of the STAR software chain.
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In the following sections, we explore the necessary correction factors for each

case. Since our principle goal in this analysis is the spectra of charged Kaons, these

correction factors must be determined as a function the quantity of interest (mT, pT,

etc.)

4.2.1 Acceptance

As mentioned above, this factor may be estimated with simple calculations or

by studying embedded Kaons. The latter is more thorough and accurate, but it is

interesting to examine both approaches as a cross-check.

Approximate Calculation

For the purposes of this calculation, we shall ignore gaps in the acceptance at

sector boundaries. This would depend on the curvature (i.e. momentum) of the track

and, being a higher order correction, would unnecessarily complicate the discussion.

Thus acceptance at a given pT is dependent only on the mean lifetime, the radii

defining the fiducial volume and the magnetic field magnitude. In terms of particle

yields, the acceptance correction is

(4.3)
1

Acceptance
=

∫

∞

0
d2N

dpTdr
dr

∫ rmax

rmin

d2N
dpTdr

dr

, where r is the radius (in STAR coordinates) at which decay occurs, and rmax/min

reflect the fiducial volume 133 cm < r < 179 cm. The lifetime distribution is well

known (dN
dt

= 1
τ
e−t/τ , where τ = 371.3 cm is the charged Kaon mean lifetime). This

motivates the recasting of the expression in terms of lifetime.

(4.4)
1

Acceptance
=

dN
dpT

∫

∞

0
dN
dt

dt

dN
dpT

∫ tmax

tmin

dN
dt

dt
=

∫

∞

0
dN
dt

dt
∫ tmax

tmin

dN
dt

dt
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The numerator is readily integrated.

(4.5)

∫

∞

0

dN

dt
dt =

∫

∞

0

1

τ
e−t/τdt = 1

The integral in the denominator will not be analytic unless we make some ap-

proximations. We will show here that they are not unreasonable, and it will be

demonstrated later that they yield a surprisingly good result. The first approxima-

tion is dr/dt. It is easy to show that s = t p
m

, where st is the path length traversed

by the Kaon before it decays. But s⊥
s

= cos(λ) = pT

p
, where λ is the dip angle. This

means that s⊥ = tpT

m
. One can see from Figure 4.2 that r = 2R sin( s⊥

2R
), where R = pT

qB

and the charge q = .003 GeV/c
T ·cm

. In terms of lifetime and momenta,

(4.6) r = 2
pT

qB
sin(t

qB

2m
)

. The argument to the sine function for a mean lifetime Kaon in a 0.5 Tesla

field is 0.56 . The sine of 0.56 is 0.53, so we see that by approximating sin(x) '

x, we are only sacrificing about 5% accuracy for mean lifetime Kaons (¡pT¿ ' 600

MeV). Recall that the outer radius of the kink fiducial volume is 179 cm, and the

maximum extent in z from the origin is 210 cm. One can see, therefore, that the

maximum pathlength for a charged Kaon originating from the origin is on the order

of
√

(π
2
179 cm)2 + (210 cm)2 = 351 cm. This means that almost all Kaons that we

detect have lifetime less than the mean, and our error at this step is considerably less

than 5%.

In this approximation, r ' 2R s⊥
2R

= s⊥, and so we have simply r ' t pT

m
. This

enables us to do the integral in the denominator of the efficiency correction. The

lifetime limits are tmax/min ' rmax/min
m
pT

.
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Figure 4.2: Path length in the transverse plane.
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(4.7)

∫ tmax

tmin

dN

dt
dt '

∫ rmax
m
pT

rmin
m
pT

1

τ
e−t/τdt = e

−rmin
m

pTτ − e
−rmax

m
pTτ

At this point, another approximation is warranted. Here, the arguments to the

exponential are large, and second order terms must be included in the approximation.

It is useful to factor out these terms and define the alternate coordinates xmax/min ≡

rmax/min
m

pTτ
, x ≡ 0.5(xmax + xmin), and ∆ ≡ 0.5(xmax − xmin). For mean pT charged

Kaons, we have xmax = 0.397, xmin = 0.295, x = 0.346, and ∆ = 0.051. Thus

expanding the exponentials to second order is good within 8%.

e
−rmin

m
pTτ − e

−rmax
m

pTτ = e−xmin − e−xmax ' 2∆(1 − x)

Acceptance
∣

∣

<pT>
= e−0.295 − e−0.397 = 0.0722

' (0.397 − 0.295) +
1

2
(0.2952 − 0.3972) = 0.0667(4.8)

With this somewhat crude approximation, we can now examine the functional

form of the acceptance correction. We see that the expansion to second order is good

to 4% for mean pT.

1

Acceptance
=

1

2∆

1

1 − x
1

Acceptance

∣

∣

∣

<pT>
= 15.0

' 1

2∆
(1 + x + x2) = 14.4(4.9)

Finally, we have a relatively simple approximation for the acceptance correction:

1

Acceptance
' 1

2∆
(1 + x + x2)

=
1

rmax − rmin
(
τ

m
pT +

1

2
(rmax + rmin) +

1

4

m

τ
(rmax + rmin)2 1

pT

= 16.3pT + 3.39 + 0.704
1

pT
(4.10)
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With this estimate established, we will compare this simple result with the more

comprehensive study from embedded Kaons.

Embedding Acceptance Correction

The more robust and accurate method is to use data with embedded MC Kaons.

To simplify the discussion, we will introduce some terminology related to embedding

in the particular context of kink analysis.

Embedded: Charged Kaons which are input to GEANT. They have not yet been

propagated through STAR.

MC: Embedded Kaons which have been propagated through the STAR volume by

GEANT and decaying in the kink fiducial volume.

Reco: A reconstructed kink; this is found using tracks which may contain hits from

embedded or real tracks.

Reco Assoc: A Reco kink which is associated with a MC Kaon decaying in the

fiducial volume.

This somewhat simplifies our definitions of efficiency and acceptance. Note that,

in order to recover the original spectra, we need to multiply our raw spectra by the

inverse of these factors. For example, the factors in a given transverse momentum

bin would be

1

Acceptance
≡ Embedded

MC
1

Efficiency
≡ MC

Reco Assoc

Correction ≡ Embedded

Reco Assoc
=

1

Acceptance · Efficiency
(4.11)
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Figure 4.3: Calculated acceptance correction (dashed) and the actual correction from
embedded Kaons (solid).

. A representative example of the acceptance correction factor is shown in Figure

4.3. This shows the almost linear form of the acceptance in the region 0.2 < pT <

5GeV/c. It also shows the result of fitting this to an expression with the form found

above. The function fits well, and the curve differs by less than 10% from the rough

estimate made above.

For the simple acceptance factor we calculated, there should be no dependence on

centrality. The only factors are the lifetime of the particle, its transverse momentum,

and the boundaries of the fiducial volume. In the inter-sector gaps, one expects to

lose more high pT particles because they have straighter tracks and can miss the

active pad volume entirely. Since this is a higher order effect, though, we expect our
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Figure 4.4: The three parameters of the acceptance correction fit vs. centrality.
The dashed line is the calculated value, and the solid line is the fit (mean) over all
centrality.

acceptance correction to be fairly uniform across centrality. Figure 4.4 shows the

parameters found when fitting the acceptance correction in each of the ten centrality

bins. One sees that the linear term is fairly uniform across centrality, where the

smaller contributions are somewhat less well determined. In all cases, though, the

mean across centrality of the fit parameter is close to the estimated value. These

mean fit parameters are shown below:

(4.12)
1

Acceptance
= 14.9pT + 3.33 + .428

1

pT
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4.2.2 Efficiency

Efficiency (or lack thereof) may be a result of electronics, cluster finding, hit

finding, track finding, secondary vertex (kink) finding, and analysis cuts. These

varied sources are beyond estimation with simple models, so we continue with the

embedded Kaons. We calculate the correction factor in Equation 4.11 as a function

of pT or mT. As is the case with Acceptance, calculating the correction histograms

for each spectra independently is much more accurate than calculating the pT factor

from the mT correction or the reverse.

The pT Efficiency correction for the most central bin is shown in Figure 4.5. One

sees that the maximum efficiency is about 12%, going below 3 % for higher momenta.

This unfortunate effect is due to the fact that the individual parent and daughter

tracks for the kink are not well resolved for decay angles below 6 degrees. In fact,

the majority of such kinks are never reconstructed because the short daughter track

is merged with the parent during track-finding. Because of the Lorentz boost from

the parent, the mean decay angle becomes smaller for higher momentum kaons. At

momenta above 3 GeV, most kaons have decay angles below 6 degrees. Work is under

way to address this issue, as it seriously impacts the ability of STAR to measure

high momentum charged kaons from their decay topology. The efficiency also dips

at lower pT; this decrease in the kink-finding efficiency reflects that in single track

reconstruction at lower momenta.

4.2.3 Background Correction

The efficiency and acceptance corrections compensate for real Kaons that we miss

in reconstruction. Now we move on to the study of background, i.e. reconstructed
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embedded Kaons.
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kinks that are not really Kaons. Again, simulation is the most powerful tool we have

for understanding background, because it is the only one which allows us to know

what was really a Kaon in the first place. In order to get the necessary statistics, one

normally examines pure HIJING events instead of embedded data.

Association plays a key role once more when examining the background. Kinks

which are associated with MC Kaon decays are signal. Those which are associated

with some other MC process are correlated background. Finally, those not associated

with any MC vertex are pure combinatorial background. Once the magnitude of the

background in HIJING is known, we are faced with two questions: 1) What method

should be used to subtract the estimated background from the data, and 2) How

reliable is the background correction obtained from HIJING?

Comparison of HIJING with data

We shall address the latter question first. The best way to evaluate the accuracy of

HIJING in this respect is to compare it to the results from data. The kink decay angle

is one good probe, because its theoretical distribution is easily calculated from first

principles. This allows us to compare both data and HIJING to the theoretical result.

The result of this comparison is shown in Figure 4.6. The calculation is simple: first,

the decay direction of the daughter relative to the parent in the center of momentum

(CM) frame is homogeneous. I.e., ρ(Ω)dΩ = 1
4π

dΩ, where dΩ = sin(θ)dθdφ. For

simplicity, we take z to be the direction of parent motion. Thus the probability of a

certain CM decay angle is

(4.13) ρ(θ)dθ =

∫ 2π

0

1

4π
sin(θ)dθdφ =

sin(θ)

2
dθ

Given the momentum of the parent Kaon, the Lorentz boost of the daughter’s
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decay angle is expressed as follows.

(4.14) tan(θlab) =
plab

T

plab
z

=
pCM

T

γ(pCM
z + βECM)

The momenta shown are those of the charged daughter, and β ≡ p
E

and γ ≡

1/
√

1 − β2 are the usual Lorentz factors based on the parent momentum in the lab.

We can recast this to relate directly the decay angles in the lab and cm frame.

(4.15) tan(θlab) =
tan(θCM )

γ(1 + βcoth(yCM))

Here, y is the usual rapidity variable (tan(y) = pz/E) for the daughter in the

CM frame. In the second equation we have approximated y' η, the pseudorapidity

variable (η = −ln(tan(θ/2))); this is only good when In order to determine the

probability distribution of a given lab frame decay angle

. Knowing this, we can easily throw random decay angles in the CM frame.

In order to transform them into the lab frame, however, we must use a realistic

momentum distribution. The best way to do this is to generate a theoretical decay

for each reconstructed Kaon in the data. One can then use this momentum to boost

the CM decay angle into the lab. The Lorentz boost to the decay angle is calculated

by

(4.16) tan(θlab) =
plab

T

plab
z

=
pCM

T

γ(pCM
z + βECM)

, where the momenta shown are those of the charged daughter, and β ≡ p
E

and

γ ≡ 1/
√

1 − β2 are the usual Lorentz factors based on the parent momentum in the

lab. Now the procedure to calculate the theoretical decay angle distribution is clear:
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1. Generate a lab decay angle θ in [0, π] and a probability ρθ in [0, 1].

2. If ρθ ≤ sin(θ)
2

, proceed to step (3). Otherwise, repeat step (1). This selects the

area under the curve p(θ), reproducing the correct probability distribution for

θ.

3. Take the magnitude of the momentum from a kink candidate in data. Use this

momentum to boost the CM decay angle into the lab frame using Equation

4.16.

Figure 4.6 shows the decay angle distributions in the mean pT bin (.55 < pT < .65

GeV/c). They are normalized to have the same integral. One notes the longer tail

of the calculated distribution. This can be attributed to lower kink reconstruction

efficiency at higher decay angle. The data and HIJING curves agree fairly well, with

their centers being offset by approximately 5 degrees. The high angle tails are in very

good agreement.

One sees even better agreement between MC and data in the parent-daughter

DCA distribution shown in Figure 4.8. HIJING is slightly shallower, differing by

about 5% at the peak and 50% in the tail.

Another kinematic variable to examine is the invariant mass obtained if one as-

sumes the Muon (K+ → µ+νµ) decay channel. One uses 3-momentum conservation

in the lab to determine the momentum of the missing daughter and solves for the

parent mass:

−→pν = −→pK − −→pµ

InvariantMass =

√

(
√

m2
µ + p2

µ + pν)2 − p2
K(4.17)



60

Decay Angle (degrees)
0 10 20 30 40 50 60 70 80 90

0

200

400

600

800

1000

1200

Data vs. HIJING Decay Angle comparison

 < 0.7 GeV/cT0.6 < p

Data

HIJING Reconstructed

Data vs. HIJING Decay Angle comparison

Figure 4.6: Comparison of decay angle from HIJING and data.
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This distribution should be peaked at the charged Kaon mass. This is seen in the

HIJING spectra shown in Figure 4.7. Note that the other decay modes are visible.

The 2 Pion channel (K+ → π+π0) is peaked slightly below the Muon channel, and

the 3 Pion channels (K+ → π+π+π− and K+ → π+π0π0) are peaked at a much lower

invariant mass. Looking at the invariant mass from data, we see a very similar shape,

with an obvious pion contribution to the low invariant mass peak.

Background Subtraction

Since we have convinced ourselves that HIJING can reproduce with reasonable ac-

curacy the distributions found in real data, we now focus on a method of applying the

background estimate from HIJING to the data. Figure 4.8 shows the parent-daughter

DCA distributions for data and reconstructed HIJING kinks after all other analysis

cuts (integrated over pT). It also shows the combinatorial and correlated background

from HIJING. We see that we are dominated by combinatorial background in all

regions; the total background is less than 10% of the reconstructed kinks.

The correlated background peaks at low DCA, as would be expected for a real

physical process, and the combinatorial background is mostly flat with a small rise

at lower DCA. Even in the tail, Kaon signal dominates out to 5 mm. We desire

a method which will allow us to estimate the background in the low DCA region,

where the Kaon signal is strongest. Since the background is more dominant at high

DCA, it is natural to use the reconstructed yield in this region as an estimate of

the background. For the best estimation possible, we seek a DCAcut such that the

integral of all reconstructed tracks from DCAcut to 0.5 cm closely approximates the

integral of the background in the region from 0 cm to DCAcut.

The method of background subtraction for each bin in pT is as follows:
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Figure 4.7: Invariant mass distributions from data and HIJING.
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Figure 4.8: Comparison of parent-daughter DCA from HIJING and data.
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1. Make the dNreco/d(DCA) and dNbackground/d(DCA) histograms.

2. Search for DCAcut such that

(4.18)

∫ 0.5cm

DCAcut

dNreco

d(DCA)
d(DCA) =

∫ DCAcut

0cm

dNbackground

d(DCA)
d(DCA)

3. Fit the resulting DCAcut to a smooth function of pT.

4. For data, kinks with DCA ≤ DCAcut are labeled as signal. Those with

DCA > DCAcut are labeled as background. The “background” spectra is then

subtracted from the “signal” spectra to form corrected mT or pT spectra. (This

step is done before efficiency and acceptance corrections, of course.)

The cut DCA varies considerably with pT, as one might expect. The higher the

pT, the straighter is the track, and the more compressed is the DCA distribution

of Kaon signal. The cut DCA can be seen in Figure 4.9. One sees that it ranges

from 0.45 cm for the lowest pT to about 0.25 cm for the higher pT. The cut DCAs

for the individual pT bins are fit to an empirical functional form. It has no physical

motivation, but serves to smooth the curve at higher pT, where low statistics from

HIJING cause uncertainty in the cut DCA. This curve fits very well the low pT

region and is effectively flat above 2 GeV/c. This is quite reasonable, as tracks

above 2 GeV/c are for all intents and purposes straight lines. One important point

is that the DCA cut does not vary significantly over centrality. Comparison of DCA

distributions for central and peripheral data show no substantial difference. So the

DCA cut function may be used without regard for centrality. Its functional form is

DCAcut(pT) = 0.160 cm + (0.0949 cm)/p0.701
T . The errors from the fit are propagated

to the final background-subtracted spectra.
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It should be noted that the background is slightly different for K+ and K−. The

combinatorial background is the same for both, but the correlated background differs

due to the different physical processes and the abundances of the particles contributing

to the background. The combinatorial background makes up about 8% of the data

for each charge sign, and the average of the correlated background is about 2%. The

K+ correlated background is 20% higher than that for K−, which propagates to less

than a 0.5% effect on the corrected spectra. That being the case, we estimate the

background by summing both charges to increase statistics and improve the precision

of the DCA cut.

4.3 Analysis Cuts

Background subtraction is a useful tool, but it is only an estimate and is only as

good as the simulation software one uses. In the analysis, it is important to reduce

the background as much as possible while preserving Kaon signal. One only uses the

background subtraction to compensate for background which cannot be eliminated

by a suitable analysis cut. What follows are the set of offline analysis cuts we use to

reduce the background from over 90% to 10% while preserving most of the signal.

For each cut, we show HIJING kinks after all other cuts have been made. This

gives a good idea of the net effect of each cut. The first plot shows actual Kaon

decays from HIJING (signal). The other two show the correlated and combinatorial

background from HIJING.
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Figure 4.9: HIJING Parent-daughter DCA vs. pT for signal, correlated background,
and combinatorial background.

4.3.1 DCA Cut

As mentioned above, Figure 4.9 parent-daughter DCA cut along with the HIJING

signal and background. One can see that the DCA distribution narrows with increas-

ing pT. The relatively flat distribution of the combinatorial background is also seen.

This cut does not significantly reduce background; we use it principally to estimate

the background in the low DCA region.

4.3.2 Local φ Cut

The boundaries between sectors cause considerable problems with track recon-

struction. Tracks are often split, creating one track in each sector. These track pairs

are easily reconstructed as kinks with low decay angle. The majority of these split
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Figure 4.10: HIJING sector-local φ vs. pT for signal, correlated background, and
combinatorial background.

tracks may be eliminated from our analysis by cutting on the local azimuthal angle

relative to the center line of the TPC sector in which the decay occurred. One sees

that the majority of the combinatorial background is outside this cut. The cut, shown

in Figure 4.10, preserves the inner 25 degrees (out of 30) in each sector and removes

kinks within 2.5 degrees of the sector boundary. It is not momentum-dependent.

4.3.3 Daughter Momentum

One quality cut is on the momentum of the daughter particle. We cut at 100

MeV/c, which removes a great deal of combinatorial background. One source of

this background would be the random intersection of a primary track with a low

momentum spiral. Another would be intersection with a low momentum artificially
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Figure 4.11: HIJING daughter momentum vs. parent momentum for signal, corre-
lated background, and combinatorial background.

reconstructed “ghost” track.

4.3.4 Decay Angle

This is one of our most powerful tools for reducing Pion contamination. A decaying

particle provides a Lorentz boost to its daughters. In the CM frame, the magnitude

of the daughter momentum has a well-defined value. If the momentum of the parent

is high enough, then the Lorentz boost is so strong as to limit the possible decay

angle in the lab frame. It is boosted so far forward that it cannot decay at larger

angles. This is easily quantified for the π+ → µ+νµ and K+ → µ+νµ decays, where

the neutral daughter is massless. The daughter momentum and energy in the CM
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frame are calculated from energy and momentum conservation:

pCM
daughter =

m2
parent − m2

daughter

2mparent

ECM
daughter =

m2
parent + m2

daughter

2mparent

(4.19)

(4.20)

The CM momentum can be boosted into the lab with Equation 4.16 to find the

decay angle there. One may then differentiate that value with respect to the CM

decay angle and set it equal to zero in order to find a maximum lab decay angle:

tan(θlab
max) =

pCM
daughter

γ
√

(βECM
daughter)

2 − (pCM
daughter)

2

=
1

γ
√

( β
βCM

daughter

)2 − 1
(4.21)

⇒ sin(θlab
max) =

βCM
daughterγ

CM
daughter

βγ
(4.22)

Notice that this is dependent only on the parent momentum in the lab frame (in

the Lorentz factor βγ = pLAB
parent/mparent) and the particle masses (βCM

daughterγ
CM
daughter =

pCM
daughter/mdaughter). Also, it has no solution for β < βCM

daughter. For parent momenta

larger than this, however, there is a maximum decay angle in the lab. We calculate

this value as a function of parent transverse momentum for both the pion and Kaon

decays. The former we use as a lower cut, and the latter an upper. One can see that

the lower cut eliminates almost all Pions (correlated background) remaining in our

sample. The upper cut does little. Our actual lower cut is about 4 degrees above the

theoretical maximum for Pion decays to compensate for momentum resolution and

other effects. One sees that this reduces a great deal of combinatorial background at
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Figure 4.12: HIJING decay angle vs. momentum for signal, correlated background,
and combinatorial background.

higher momentum while having little impact on the signal.

4.3.5 dE/dx cut

Energy loss is another way of removing Pions from our sample. We cut around

the Bethe-Bloch curve for charge Kaons, removing very little signal but eliminating

much of the correlated (mostly Pion) background. Interestingly, this cut also removes

a great deal of combinatorial background. This is due to the fact that the majority

of combinatorial background at low momentum still has a pion as the kink parent.

(This is just statistical; Pions make up the majority of low momentum particles.) See

Figure 4.13.
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Figure 4.13: HIJING dE
dx

vs. momentum for signal, correlated background, and com-
binatorial background.
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Figure 4.14: HIJING minimum ∆E vs. momentum for signal, correlated background,
and combinatorial background.

4.3.6 Minimum ∆ E

In the analysis of the
√

sNN=130 GeV data, this was the kinematic cut used.

“Minimum ∆ E” is a quantity formed by finding the minimum degree of energy non-

conservation among various decay hypotheses. For each kink, energy and momentum

are conserved based on several Kaon and Pion decay hypotheses. The hypothesis

which results in the best degree of energy conservation is chosen, and the amount by

which it differs from zero is its Minimum ∆ E. One can see on Figure 4.14 that the

cut does little to reduce background. Both signal and Background are concentrated

at low ∆ E.
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4.3.7 Invariant Mass

The search for a better kinematic cut resulted in choosing invariant mass. This is

calculated by assuming the K+ → µ+νµ decay channel for a kink, as discussed above.

The distribution of this value is shown in Figure 4.15. For the Kaon signal, one

sees clearly the two peaks for the three dominant decay modes. The Muon channel

is centered at the Kaon mass. The two Pion channel is peaked only slightly below

this and appears as part of the same peak. The lower peak is due to the three Pion

channels. One sees that most of the combinatorial and correlated background is below

0.3 GeV/c2, so we sacrifice the least significant Kaon decay mode in the signal and

drastically improve our signal to noise ratio. There is also a loose upper cut at 1

GeV/c2.

4.4 Systematic Error

Systematic error is determined using several methods. First, differences in cor-

rected spectra as a function of detector geometry (azimuth or reflection in z) indicate

a systematic uncertainty. Secondly, variation of the analysis cuts should not affect the

corrected spectra; any effect reflects a systematic uncertainty. Thirdly, a systematic

error for the background estimation technique may be inferred from the difference

between the signal to background ratio in data vs. that in HIJING simulation. A

fourth source of systematic uncertainty is momentum resolution. Finite resolution

will cause momentum spectra to “bleed” to higher momenta, assuming that resolu-

tion is roughly symmetric. See Figure 4.16 for the momentum resolution, which is

defined as the difference between the reconstructed and input momenta divided by

the input momentum. The net effect of these systematic uncertainties is 7% at pT =
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Figure 4.15: HIJING invariant mass vs. momentum for signal, correlated background,
and combinatorial background.
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Chapter 5

Results and Discussion

5.1 Event Selection

The events analyzed were selected based on data quality and collision centrality.

A small percentage of runs were eliminated from the analysis due to transient detec-

tor problems discovered during STAR’s comprehensive quality assurance procedures.

Results are presented in terms of collision centrality, which is determined from anal-

ysis of the minimum bias triggered data. The standard in STAR is to base collision

centrality on the number of primary tracks in mid unit pseudorapidity (|η| < 0.5);

this is commonly called nCharge. The values of nCharge used for centrality bins and

the corresponding fraction of the total Au-Au cross section of 7.2b are shown in Table

5.1.

Unless otherwise indicated, the data shown for the 5% most central bin is from

events with the ZDC central trigger. These ZDC triggered events are the 10% most

central according to ZDC measurements. This does not correspond exactly to cen-

trality determination based on nCharge; in fact, one may only use the ZDC triggered

central data down to the 8% most central events (based on nCharge). Below that, the

nCharge centrality determination becomes biased by the ZDC event selection. Since

we only take the 5% most central events from this data set, no appreciable bias is

introduced.

The other centrality bins are taken from the minimum bias triggered data. One

final event cut is required to ensure a minimum of centrality bias. The ZDCs are used
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Fraction of total cross section (7.2 b) nCharge ≥
0.8 14
0.6 56
0.4 146
0.3 217
0.2 312
0.1 431
0.05 510

Table 5.1: Fraction of total Au-Au cross section (from a Glauber model calculation)
as a function of nCharge (the number of primary tracks with |η| < 0.5).

for a rough determination of the collision vertex by comparing the times at which

neutrons are detected on each end of the experimental hall. This ZDC coincidence

measurement has some dependence on centrality for large vertex z positions. As a

result, we are required to limit the vertex z position to ± 25 cm for all events.

5.2 K-/K+ ratio

Particle ratios provide useful probes of the chemical composition of the collision

fireball at different stages. Anti-particle to particle ratios are of particular experi-

mental interest because many of the measurement uncertainties are divided out. For

example, the acceptance for K+ and K− are functions only of the detector geometry

and the particle lifetime; thus this factor is the same for both species. Regarding back-

ground, it has been discussed that the difference between the correlated background

in K+ and K− results in less than a 0.5% effect in the ratio. The only correction fac-

tor that is not effectively cancelled out in the ratio is efficiency. That is because K−,

which carries the valence ū antiquark, is prone to absorption in the detector before it

can be reconstructed. All the ratios we present here are absorption-corrected.

The anti-meson/meson ratio is of particular interest for charged Kaons. Charged

Kaons are produced by two means. First, the strange and anti-strange quarks may
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be pair-produced in the initial stage of the collision. If this were the only source,

and the s/s̄ quark ratio completely determined K−/K+, we would expect a ratio of

1. Since the K+ also carries the valence up quark, however, it can also be made in

“associated production” such as π+p → K+Λ. There is also another complication

in the interpretation of the Kaon ratio. The (anti-)strange quarks are not the only

determining factor in the ratio; the net baryon density (baryons - anti-baryons) is also

important because that determines the relative abundance of the (anti-)up quarks. If

the net baryon density is greater than zero, K+ is more likely to be produced because

it contains the more common up quark.

A simple model which provides insight into the charged Kaon ratio is the “con-

stituent quark model”, in which the relative abundances of hadrons are related to the

abundances of their valence quarks. Using simple quark counting, for example, we

can predict the K−/K+ ratio:

(5.1)
K−

K+ =
(sū)

(us̄)
=

(ūūd̄)

(uud)
· (uds)

(ūd̄s̄)
=

p̄

p
· Λ

Λ̄

The ratio we measure is K+/K− = 0.90±0.002(stat.)±0.05(syst.). The p̄/p and

Λ̄/Λ ratios are also measured in STAR; they are 0.75±0.05 and 0.82±0.06, respec-

tively. That predicts a charged Kaon ratio of 0.91±0.13, in very good agreement

with the measured value. The value measured for
√

sNN = 130 GeV Au-Au collisions

at RHIC in STAR was 0.88±0.01(stat.)±0.05(syst.). We see a slight increase in the

ratio, suggesting some decrease in the net baryon density for
√

sNN = 200 GeV.
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5.2.1 K+/K− vs. rapidity

It is important to remember that the results presented here are only at mid unit

rapidity. The simple quark counting model above is only valid for integrated 4π

yields. This is because the conservation of quantum numbers is a global rule. The

fact that we observe excellent agreement with the model is due in no small part to

the fact that the charged Kaon yields (and ratios) are very close to flat in the region

of interest. This boost invariance reduces the sensitivity of the analysis to effects

such as hydrodynamical flow. The ratio as a function of rapidity is shown in Figure

5.1. In the symmetric environment of STAR, we expect symmetry across y=0. Any

variance between corresponding bins in positive and negative rapidity is considered

as a contributing factor to our total systematic error.

5.2.2 K+/K− vs. pT

The ratio as a function of transverse momentum is flat within statistical error

out to 4.2 GeV/c. This is in contrast to the protons and Λ baryons, which exhibit

a definite decrease in the antiparticle/particle ratio at high transverse momentum.

This may be an indication that whatever hydrodynamical flow the charged Kaons

exhibit is the same for both charges within the momentum range shown.

5.2.3 K+/K− vs. collision centrality

Figure 5.3 shows the charged Kaon ratio as a function of collision centrality, de-

fined as the percentage of the total Au-Au cross section of 7.2 b. The ratio displays

very little dependence on centrality.
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Figure 5.1: The ratio K−/K+ as a function of rapidity for the 5% most central
collisions.



81

 (GeV)Tp
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 (0 - 5%)+/K-K
 0.001963 ±ratio    = 0.8996 

 (0 - 5%)+/K-K
 0.001963 ±ratio    = 0.8996 

Figure 5.2: The ratio K−/K+ as a function of transverse momentum for the 5% most
central collisions.



82

decreasing centrality (%)
0 10 20 30 40 50 60 70 80

K
-/K

+

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

K-/K+ vs. centrality (decreasing to the right)

Figure 5.3: The ratio K−/K+ as a function of the collision centrality. The centrality
is determined by the number of primary tracks at mid-rapidity



83

5.3 K+ and K− spectra

The transverse mass and transverse momentum spectra of particles are of particu-

lar interest in high energy physics. The transverse momentum is all generated during

the collision and so provides a probe of the dynamics of the interaction. The trans-

verse phase space is also simple to work with because it is Lorentz boost invariant.

The shape of the spectra owes its origin to two effects. First, if the initial fireball

may be considered locally thermalized, the measured distribution will have should

have a Boltzmann distribution of energy [14]:

(5.2)
1

N

d3N

dp3
=

1

4πm2TK2(
m
T

)
e−

E
T

. Using dy/dpz = 1/E and d2N/dp2
T = d2N/dm2

T, this simplifies to

(5.3)
1

N

d3N

dp3
=

1

N

1

EmT

d3N

dmTdydφ
=

1

N

1

2πEmT

d2N

dmTdy

. The next step is to integrate over the longitudinal degrees of freedom. Various

approximations are appropriate in different cases, depending on the collision details.

Whatever approach we take, the result has the form

(5.4)
1

2πmT

d2N

dmTdy
= Ama

Te−
mT
T

. For example, if we assume that the ratio m/T is large, the power a is approxi-

mately 1/2. In a very narrow region about y=0, we can take dN/dy to be a constant.

In the same region, we can also approximate E = mT cosh(y) ≈ mT, which yields a

power a of 1. A more realistic scenario is to consider a superposition of fireballs along

the z axis, which is representative of the situation in a RHIC collision. This results in

an exponent a of 0, and we are left with a normalized pure exponential distribution
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of the form

(5.5)
1

2πmT

d2N

dmTdy
=

dN
dy

2πT (T + m)
e−

mT−m

T

The thermal effect is not the only influence on the distribution, however. The

interaction region has a very high hadronic density but is finite in size. As the

initial fireball makes the transition back to cold hadronic matter, it is subject to

large pressure gradients and begins to expand. This can lead to collective velocity,

i.e. flow. Transverse flow will have more effect on the transverse spectra of heavier

particles because the same collective velocity will influence their momenta more than

that of lighter particles. The temperature, then, which is derived from a Boltzmann

or exponential fit should not blindly be interpreted as the equilibrium temperature

at thermal freeze out. In fact, the temperature is increased by the kinetic energy of

each particle species for the given transverse flow velocity [30]:

(5.6) T = Tth + m < βr >2

Qualitatively, this says that the temperature one measures by fitting the particle

spectra has components due to the thermal freeze out temperature of the fireball and

the collective transverse velocity generated by the pressure gradients in the collision

region.

Preliminary fits to the RHIC 200 GeV proton, pion, and Kaon spectra are consis-

tent with a simultaneous fit of the spectra with parameters βr = 0.7 ± 0.2 and Tth =

110 ± 23 MeV. The errors are systematic. [13]

5.3.1 Transverse momentum spectra

The plain dN/dpT spectra are in many ways the most honest way of examining

the particle yields. First, they show clearly on a linear axis how much statistical error
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Centrality (%) dN/dy < pT >
0-5 54.7708±0.570183 0.669069±0.00442267
5-10 44.474±0.635251 0.667676±0.00657332
10-20 33.1036±0.347136 0.666786±0.0046732
20-30 23.1499±0.264789 0.657877±0.00506035
30-40 15.1389±0.19856 0.649762±0.00575077
40-60 7.88472±0.105115 0.620265±0.00560017
60-80 2.31785±0.0517241 0.588098±0.00887952

Table 5.2: < pT > in GeV and integrated yield for (K+ + K−)/2.

is present in the measurement and how well any fits agree with the data. Secondly,

they provide a simple way to count the total particle yield, irrespective of any model.

In Figure 5.4, we see the charge-averaged pT spectra for seven different centrality

bins. The data are smooth out to 2 GeV/c, and they are well-fit to an mT exponential.

While the temperatures from the exponential fit do not have a direct physical in-

terpretation, the < pT > values and integrated yields at midrapidity (dN/dy) are very

interesting quantities. The results of the fits for all seven centrality bins are shown

in Table 5.3.1 and Figure 5.5. As expected, both the mean transverse momentum

and integrated yield drop as the collision becomes less central. The mean pT for the

exponential distribution in Equation 5.5 is

(5.7) < pT >=
m2

m + T
e

m
T K2(

m

T
)

5.3.2 Transverse mass spectra

The transverse mass spectra plotted on logarithmic axes give a good feel for the

“temperatures” (inverse slopes) found from fits. Figure 5.6 shows the charge-averaged

mT spectra for the seven centrality bins. One immediately sees that the exponential

fits are good out to about 1.5 GeV, above which the spectra move up and away from

the fit. This tail at higher transverse mass is well fit by a QCD-inspired power law. [12]
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Figure 5.7 shows this transition between the mT exponential and the pT power law.

The exponent for the power law (1/(2πmT)dN/dmT = Ap−B
T ) is 7.8± 0.9(stat). This

value is not compatible with 2→2 hard parton scattering; this reflects the complexity

of the Au-Au collision fireball and the inevitable rescattering that occurs. [11]

5.3.3 Rapidity spectra

We have already alluded to the fact that the rapidity spectra are flat near mid-

rapidity. This is shown in Figure 5.8 for the 7 centrality bins. The spectra are flat in

|y| < 0.6 to the 10% level. Reflected across y = 0, we see at most a 5% disagreement

between corresponding bins. These bins should be equal, so this 5%is a good estimate

of systematic error on dN/dy.
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5.3.4 Kaon to Pion ratio

The Kaon to Pion ratio, being the ratio of the lightest (and thus most numerous)

strange and non-strange mesons, provides a useful probe of the relative strangeness

content of the system.

Recall the charged Kaon production methods discussed in Chapter 1. The K−/π−

ratio is not influenced by associated production, because the valence s quark of the

K− does not come from transport of baryon number from the initial collision (in con-

trast with the valence u quark of the K+). That ratio, then, is determined entirely

by the increase of pair production and should increase monotonically with collision

energy. K+/π+, on the other hand, has contributions from both the increasing tem-

perature and decreasing baryon density. Both ratios are shown in Figure 5.9. We

see the monotonic behavior of K−/π− with respect to the CM energy, and the more

complicated behavior of K+/π+ as the decreasing baryon number quenches the rapid

increase seen at low
√

sNN .

This picture is entirely consistent with the observed decrease in baryon density

with increasing
√

sNN in heavy ion collisions. [3]

5.4 Central to peripheral comparison

One very interesting probe of particle production mechanisms is to examine the

momentum spectra of particles as a function of centrality. What we show in Figure

5.10 is the ratio of the 0-5% central pT spectra divided by the 60-80% spectra for

charged Kaons. There are two relevant scaling parameters for such an RCP plot, both

of which are calculated with a Glauber model. One is the ratio of the mean number

of binary nucleon-nucleon collisions (NBC) in the two centrality bins. The other is
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Figure 5.9: Kaon to Pion ratios versus center of mass energy.
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the corresponding ratio of the mean number of participant nucleons (NPart). The

ratio and both scaling bars are normalized to the number of binary collisions.

(5.8) RCP (pT) =
< N

peripheral
binary collisions

>

< Ncentral
binary collisions

>

d2Ncentral/dpTdy

d2Nperipheral/dpTdy

One quantity such a ratio can probe is the opacity of the initial fireball to hard

scattered partons. High momentum hadrons are produced by the fragmentation of

parton jets; one might naively expect the number and magnitude of these jets to

increase with increasing collision centrality. This is exactly what was was observed

at the SPS [29], in that RCP continued to increase with increasing pT. There is an

effect which can counter the higher energy density, however. If the medium of the

fireball exhibits some degree of color deconfinement, the hard scattered partons lose

significant energy before fragmentation into hadrons because they radiate gluons in

the color-charged medium.

At RHIC, one observes definite suppression of high momentum hadrons in central

Au-Au data. The effect is present in all identified particle species individually. We

see it clearly in the Charged Kaon spectra presented here.

The changeover from soft to hard physics with increasing momentum, however,

provides a number of complications in understanding the source of this suppression.

[10] For example, collective radial flow as mentioned above may result in a significant

modification of transverse momentum spectra in Au-Au collisions relative to N-N.

To separate this effect from a QCD hard processes, it is important to look at N-

Au collisions. We expect the coming STAR d-Au data to be very important in this

respect.
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Chapter 6

Conclusions

These charged Kaon results stand out because they offer high quality particle

spectra to transverse momentum beyond 4 GeV. We see a definite change in the

shape of the spectra at high momentum that is more consistent with a pQCD picture

than that of thermal production. We also observe significant suppression of the central

data relative to peripheral. Such measurements will prove very useful in developing

models of hadron production at high momentum.
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Appendix A

Reconstruction of the Charged Kaon Lifetime

A.1 Introduction

The determination of the proper mean lifetime for charged Kaons in STAR is

complicated by both limited lifetime acceptance and momentum-dependent cuts. A

number of more elegant mathematical approaches were investigated to compensate for

these effects, but in the end it was seen that the simplest and most reliable approach

is a thorough analysis of simulated tracks embedded in a real event. This approach

should be effective in any collider experiment.

A.2 Lifetime Acceptance in STAR

The proper lifetime of a particle is simply related to its lifetime, tL, and velocity,

v, in the laboratory by

(A.1) t0 =
tL
γ

, (γ ≡ 1
√

1 − β2
, β ≡ v

c
).

The time in the laboratory is related to the distance traversed by the particle by

tL = s/v = s/(βc), so the proper lifetime can be expressed in terms of the distance

traversed in the laboratory and the particle’s mass, m, and momentum, p = mvγ, as:

(A.2) ct0 =
s

βγ
= s

mc2

pc
.

The mean proper lifetime of the charged Kaon is cτ = 371.3 cm. The fiducial

volume in STAR that is searched for kink decays is 133 cm < r < 179 cm. Given
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Figure A.1: Transverse projection of helix

these radial limits, it is useful to find a simple expression for the path length traversed

between two points by a helix representing a particle with charge q, total momentum

p, and transverse momentum pT ≡ |−→p × ẑ| given a magnetic field
−→
B = Bẑ. The dip

angle of the helix is λ = cos−1(pT

p
).

As a practical matter, STAR tracking does not find tracks which cover more than

half the period of the helix. This is because track finding is done from the outside

of the TPC in, and so all tracks are monotonically increasing in the radial direction.

This greatly simplifies the task of finding path length along a track; we need only

know their separation in the transverse plane (2A in Figure A.1). It is easy to see that

the azimuthal angle between the points (x1, y1) and (x2, y2) relative to the helix axis

is a = sin−1(A
R
) and so the path length in the transverse plane is st = 2Rsin−1(A

R
).

R = pT/qB here is the radius of curvature of the helix. The full path length then is

just

(A.3) s =
st

cos(λ)
= 2

pT

qB
sin−1(A

qB

pT
)

p

pT
=

2p

qB
sin−1(A

qB

pT
)
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Figure A.2: STAR lifetime acceptance for < pT > charged Kaons

This translates readily into lifetime:

(A.4) ct =
mc2

pc

2p

qB
sin−1(A

qB

pT

) =
2mc

qB
sin−1(A

qB

pT

)

Note: This formula assumes nonzero pT. The TPC doesn’t see tracks with pT = 0,

so this is fine.

Full magnetic field strength in STAR is B = 0.5 T = 5 kG = 5x10−14 GeV s
cm2 =

0.0015 GeV/c
cm

. Thus a mid-rapidity charged Kaon in STAR that originates at the beam

line and has mean pT (< pT >≈ 600MeV) will enter and leave the fiducial volume

after traveling 133.6 cm and 180.5 cm, respectively.

Since the charged Kaon mass is m = 493.7 MeV/c2, these correspond to proper

lifetimes, ct0, of 109.9 cm and 148.5 cm, or 0.3 and 0.4 of the mean proper cτ for

charged Kaons. One can see in Figure A.2 how limited this range of 0.1 cτ is. We

shall see later on how this renders ineffective some techniques for finding the lifetime.
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A.3 Fitting with Maximum Likelihood

This is a summary and application of the Maximum Likelihood fitting method

described in Reference [31]. Note that the example in the book deals with V0 particles

in a fixed target experiment, where one typically has shorter lifetimes and larger

acceptances. First we look at the probability of one event , an observed particle

in the detector, has a lifetime ti. (Proper lifetime will be implied for the rest of

the discussion.) We factor the probability in terms of observation probability and

lifetime probability. The probability of observing a particle with mean lifetime τ ,

momentum −→pi , and position −→ri multiplied by the conditional probability that the

observed particle has a given lifetime is equal to the probability that the particle has

a given lifetime (whether observed or not):

(A.5) P (observation)P (observation | lifetime ti) = P (lifetime ti)

(A.6) ⇒ P (observation | lifetime ti) =
1

P (observation)
P (lifetime ti)

(A.7) ⇒ Pi = Ai
e−

ti
τ

τ
,

where Ai is a factor representing the detector efficiency. In this case A−1
i is the

probability that a particle having mean lifetime τ , momentum −→pi , and position −→ri

will be observed to decay in the detector. e−
ti
τ /τ is the probability that a particle

having mean lifetime τ will live time ti.

Since an event did occur (we observed a particle with properties τ , −→pi ,
−→ri ), we

can say that the integral of Pi over all observable lifetimes for a given τ , −→pi , and −→ri

must be unity. This allows us to determine Ai:

(A.8) 1 =

∫ tmax
i

tmin
i

Pidt
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(A.9) ⇒ A−1
i = (e−

tmin
i
τ − e−

tmax
i

τ ).

The upper and lower limits on the integral are functions of −→pi ,
−→ri , and the detector

fiducial volume , the region where particles may be detected. Let us examine the

specific example of charged Kaon decays in STAR. Here, the fiducial volume, as

mentioned above, is 133 cm < r < 179 cm. That means that we can express the

integral limits using Equation A.4 as

(A.10) ctmin
i =

2mc

qB
sin−1(

rmin

2

qB

pi
T

)

(A.11) ctmax
i =

2mc

qB
sin−1(

rmax

2

qB

pi
T

)

Now that the individual decay probabilities have been determined, we can look at

the joint probability associated with a set of events. This is just the probability of N

events occurring concurrently and is called the the likelihood function:

(A.12) L ≡
N
∏

i=1

Pi = τ−Ne
−1
τ

PN
i=1 ti

N
∏

i=1

Ai

As a practical matter, this number will be very small for large N, and on a com-

puter it is more useful to consider the logarithm of the likelihood function:

(A.13) M ≡ ln(L) = −Nln(τ) − 1

τ

N
∑

i=1

ti +

N
∑

i=1

Ai

The likelihood function can be used to determine any parameter in the probability

distributions. For our purposes, we wish to find which value of the mean lifetime τ

maximizes L (or M). We know that the observed events did occur and so the τ ′ which

maximizes M is the most probable value. Furthermore, for a large number of events

L is Gaussian around the most probable value of a parameter,which allows one to
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extract the uncertainty in the parameter as well:

(A.14) L(τ) ∝ e−
(τ−τ ′)2

2σ2

(A.15) M(τ) = −(τ − τ ′)2

2σ2
+ constant

The general procedure when looking at experimental data is as follows:

1. Select a set {τj} of trial mean lifetimes in the vicinity of the hypothesized value

of τ .

2. For each τj, calculate M(τj) as shown in Equation A.15.

3. Take the exponential of M to get L and fit L to a Gaussian near its peak. This

will yield the most likely value, τ ′, for the mean lifetime and the uncertainty in

that value.

In Figure A.3, we show the results of the method applied to simple one dimensional

Monte Carlo data which was thrown with flat momentum and a mean lifetime of

τK . In many situations, this give excellent results. If the range of experimentally

observed lifetimes is large relative to the mean lifetime, the correct mean lifetime can

be extracted from a small number (1000) of events. This can be seen in the topmost

figure. For very narrow lifetime acceptance, however, as many as a million events are

needed for the method to converge. One can from the bottom figures see the that the

correct lifetime is not reproduced for even 100 thousand events.

There is even more to the story, however, as the method described above as-

sumes perfect efficiency within the detector fiducial volume. This is not the case
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Figure A.3: Gaussian fits to likelihood function (p1=center, p2=width)
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in STAR because 1) not all decays in the fiducial are reconstructed and 2) momen-

tum dependent cuts are applied in order to separate Kaon signal from correlated

and combinatorial background. The second factor in particular biases the observed

lifetime distribution a great deal because momentum dependence translates directly

into lifetime dependence for a fixed acceptance.

A.4 Fitting with Virtual Particles

This method attempts to restore the signal which is lost outside of the fiducial

volume. It proceeds as follows:

1. For each event (detected Kaon), calculate the lifetime acceptance based on its

momentum and the coordinate-space acceptance. In STAR, for example, this

involves finding the upper tmax and lower tmin lifetime limits based on the outer

and inner radii of the fiducial volume using Equation A.4.

2. Using simple Monte Carlo, generate two virtual particles using the ideal lifetime

distribution (Equation A.7) and the accepted value for the charged Kaon mean

lifetime. The first particle should have lifetime 0 < tunder < tmin and the second

should have lifetime tmax < tover < ∞. These particles will represent particles

which have fallen outside the detector acceptance

3. Weigh the three particles by the integral of the probability distribution in each

region:

(A.16) w =

∫ tmax

tmin

ρ(t)dt

(A.17) wunder =

∫ tmin

0

ρ(t)dt
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(A.18) wover =

∫

∞

tmax

ρ(t)dt

4. Fill the lifetime histogram (dN/dt) with the lifetimes for the real event and

the two virtual particles, weighted as above. The weights above ensure that the

virtual particles will fall into the ideal lifetime distribution relative to the weight

of the ideal particles. Fitting this histogram will extract the mean lifetime.

This method reproduces the ideal lifetime distribution for ideal Monte Carlo

events, but it faces certain complications for real data. Firstly, it shares the problem

of efficiency with the Maximum Likelihood method above because it assumes 100%

reconstruction of particles in the fiducial volume. Secondly, it is seriously affected by

the limited lifetime acceptance of STAR. The virtual particles which are generated

for each real particle have weights much greater than the weight of the real particle.

That means that the real signal is overpowered by the virtual particles, and the hy-

pothesized mean lifetime is always reproduced, regardless of the lifetime of the real

particles.

This situation can be seen in Figure A.4, which shows the results of applying

this method to simple Monte Carlo data in the STAR fiducial volume. Particles

with monochromatic momentum were thrown according to an input mean lifetime.

Acceptance cuts were then applied to coincide with the fiducial. This data is la-

beled “uncorrected” in the histograms. The data labeled “corrected” includes both

the input particles and virtual particles thrown according to the hypothesized mean

lifetime. The histograms on the right show the result of an input mean lifetime τK

equal to the hypothesized mean lifetime. Those on the left show the same exercise

with an input mean lifetime of 3 times that of the hypothesized lifetime. In both
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Figure A.4: Results of Fitting with Virtual Particles

cases, the lower histograms show that the sum of the virtual and input particles is

much greater than the input particles alone. This is seen clearly in the upper figures,

which show that in both cases, the “corrected” data follows the hypothesized lifetime

distribution. The mean lifetime of the input particles is not recovered.

A.5 Fitting with Momentum Integral Weighting

This is one method which is not susceptible to the limited lifetime acceptance in

STAR, but it does make certain assumptions. For each input particle, we calculate its

momentum acceptance from its lifetime and the coordinate space acceptance. This
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requires knowledge of the input momentum distribution:

(A.19) P (pmin < p < pmax) =

∫ pmax(rmax,t)

pmin(rmin,t)

ρ(p)dp

Then we simply weigh the lifetime of each particle with the inverse of this prob-

ability when filling the lifetime histogram, effectively correcting for the coordinate

space acceptance in momentum space. If the input momentum distribution is know,

this approach works, as see in Figure A.5. The closed circles are the input Monte

Carlo distribution. The closed squares are that distribution after fiducial cuts. The

open circles are the cut distribution after weighting by the momentum integral. The

slope is fit from this weighted distribution, and comes out very close to 1 (the input

slope).

The weakness of this approach is that in practice the input momentum distribution

is not known, in particular when momentum Dependant cuts are applied. It fails when
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applied to STAR data.

A.6 Correcting Data Using Embedding

Besides the problem of limited lifetime acceptance, a common flaw in the ap-

proaches presented above is that they assume perfect efficiency in the fiducial vol-

ume. Since we do not have perfect detection efficiency, we must use simulated data

to calculate it. One can use embedded data (Monte Carlo tracks propagated through

the detector and placed inside real events) to determine the efficiency by looking at

how many of the Monte Carlo tracks in the fiducial volume are reconstructed. One

could, for example, determine the coordinate space efficiency and then use the maxi-

mum likelihood method. Or the momentum efficiency could be calculated and used

with the momentum weighting method above. But one could just as easily calculate

the lifetime efficiency directly (dNreconstructed/dNDecayed
Embedded) and use that to correct the

raw lifetime distribution without any more effort. In the end, this was our approach.

Figure A.6 shows our results using the embedding lifetime efficiency correction ap-

plied to year 2000 data. The ratio of the mean lifetime from the fit to the PDG

lifetime is very close to 1. Note that Kaons with shorter proper lifetime only reach

the STAR fiducial volume if they have high pT. For example, Equation A.4 shows

that a Kaon with ct = 20 cm must have pT = 3.3 GeV/c to reach the fiducial volume

(R = 133 cm). The Kaon signal at larger momentum has higher contamination and

is eliminated from the lifetime fit here.

A.7 Summary

Several analytical methods were investigated to recover the mean proper lifetime

for charged Kaons including Maximum Likelihood, Virtual Particles, and Momentum
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Integral Weighting. Due to limited acceptance and complicated momentum depen-

dencies of the analysis cuts, none of these methods produces satisfactory results. The

weighting function must be produced from detailed simulation of Kaon decays; this

method reproduces very well the accepted value of the proper mean lifetime and

should be applicable for any collider experiment.



Appendix B

Kinematics of the Charged Kaon Decay

B.1 Introduction

Understanding the kinematics of the charged Kaon decay is very important to

isolating that decay from the numerous sources of background. Here we study the

decay kinematics for the dominant K+ → µ+νµ (63.5%) decay mode.

B.2 Center of Mass Frame

In the CM frame (where the parent Kaon has zero momentum), the momenta of

the daughter Muon and Neutrino are equal and opposite. Furthermore, the magnitude

of the daughter momenta is fixed by the particle masses. The following relations are

good for any 2 body decay where one daughter is massless, such as π+ → µ+νµ.

pCM
daughter =

m2
parent − m2

daughter

2mparent

ECM
daughter =

m2
parent + m2

daughter

2mparent
(B.1)

(B.2)

Note that the decay angle is homogenous over 4π in the CM frame. I.e., ρ(Ω)dΩ =

1
4π

dΩ, where dΩ = sin(θ)dθdφ. For simplicity, we take z to be the direction of parent

motion. Thus the probability of a certain CM decay angle (for the charged, massive

daughter) is

112
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(B.3) ρ(θ)dθ =

∫ 2π

0

1

4π
sin(θ)dθdφ =

sin(θ)

2
dθ

B.3 Lab Frame

We shall now focus on the charged daughter decay angle in the lab frame, as

this is the easiest observable with which to characterize the decay. Given a parent

momentum (and associated Lorentz factors β = p/Eandγ = 1/
√

1 − β2), it is a

simple matter to boost the CM momenta of the daughter and determine the lab

decay angle.

tan(θlab) =
plab

T

plab
z

=
pCM

T

γ(pCM
z + βECM)

(B.4)

=
tan(θCM )

γ(1 + βcoth(yCM))
(B.5)

Here we have used the rapidity variable tan(y) = pz/E for the daughter in the CM

frame. This quantity differs from the psuedorapidity, η = −ln(tan(θ/2)), by terms of

order m2/4p2. Since the daughter CM momentum is fixed, this correction is always

12%. If we approximate y with η, we can simplify the expression:

(B.6) tan(θlab) =
tan(θCM )

γ(1 − β(ln(tan(θCM/2))))

Even with this simplification, however, it is impossible to algebraicly solve for

θCM as a function of θlab, so we cannot write down an analytic expression for the

distribution of decay angles in the lab frame for a fixed parent momentum. If the

parent momentum is high enough, however, there can be an upper limit on the lab

decay angle. Since the CM daughter momentum is fixed, a large boost from the
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parent will disallow large decay angles. We can see this by setting the derivative of

θlab with respect to θCM equal to zero.


