PIXEL patch efficiency

- Update of friday's meeting.
- 2 configurations of pixel sectors (3 out of 10) are studied for reconstruction of low or high Pt D⁰'s.
 - →2 different cuts on thePt of daughters are used.

Simulation

- Generate 100k D⁰ with :
 - Flat Pt in [0,5], $|\eta| < 3$, |Vz| < 10
- Use only fz file --> no reconstruction, etc ...
- Count :
 - NO : # of D⁰ after Pt cut for both daughters and $|\eta|$ <1
 - N1 : # of D⁰ with above cuts + TPC>10,PXL=2
 - N2 : # of D⁰ in triangle configuration
 - N3 : # of D^0 in joined configuration
- Then :
 - Eficiency triangle config. = N2 / N1
 - Efficiency joined config. = N3 / N1

Summary of plots

- Slide 4 : phase space of D⁰ generated with Starsim
- Slide 5-7 : application of cut | η |<1 and Pt of daughters : NO
- Slide 8-10 : application of cut | η |<1 , TPC>10, PIXL=2, and Pt of daughters : N1
- Slide 11-12 : application of cut | η |<1 , TPC>10, PIXL=2, and Pt of daughters and patch triangle : N2
- Slide 13-14 : application of cut | η |<1 , TPC>10, PIXL=2, and Pt of daughters and patch joined : N3

Phase space : default

- Pt and η of the D0's with Starsim
- Uniform distributions

Cut : $|\eta|{<}1$, Pt>0.3

Cut : $|\eta| {<} 1$, Pt>0.8

Cut : $|\eta| < 1$: comparison

- $\bullet \ \eta$ distributions are the same
- the cut Pt>.8 removes entries around Pt ~ 1GeV

Cut : $|\eta|$ <1 , Pt>0.3, TPC>10,PIXL=2

Cut : $|\eta|$ <1 , Pt>0.8, TPC>10,PIXL=2

Cut : $|\eta| < 1$, TPC>10, PIXL=2 : comparison

• η and Pt distributions have similar shapes than in slide 7.

• TPC and PIXEL hits cuts just gives a "usable" number of D⁰'s for this study (same cuts are applied in BFC reconstruction), it does not change the kinematics of the D⁰'s.

Cut :|η|<1, TPC>10,PIXL=2, patch=triangle

φ=108

φ=144

φ=18<mark>0</mark>

φ=72

φ=36

φ=0

Cut : |η|<1, TPC>10,PIXL=2, patch=triangle, comparison

• The cut at Pt>.8 removes more entries for low Pt and seems to be more efficient at intermediate Pt (2-4GeV/c) with this configuration.

Cut :|η|<1, TPC>10,PIXL=2, patch=joined

Cut : |η|<1, TPC>10,PIXL=2, patch=joined, comparison

• The D⁰'s Pt distribution is not sensible to the cut on the daughters Pt with this PIXL configuration.