HFT geometry in Run-13

Spiros Margetis

- Review goals
- The possible configuration(s)
 - Beyond engineering
 - Realistic goals; physics and not
- What is this geometry for?
- Next stop Y2014 Full HFT

Review goals

- A realistic Y2013 geometry for the PXL prototype
 - Make sure mass distribution is realistic both at midrapidity and upstream (East)
 - Impacts both PXL simulations/efficiencies and rest of STAR
 - Your input/checks/comments are important
 - Make sure model is useful in tracking etc.
 - Make sure results make sense
- Have an action plan for a geometry pre-release within a month
 - Full geometry release can only happen when hardware is actually build/finalized
 - Cu instead of Al cables, # of sectors, actual thicknesses
 - Exact placement of sectors depends on TPC-sectors state
 - Geometry versions might be needed if re-configuration of sectors is deemed necessary due to physics goals
- Verify that all elements needed for successful simulations (next slides) are present

Engineering-run goals...beyond engineering

- A prioritized (in terms of realistically achievable) list of goals is:
 - Prove Hit/Track (or tracklet) finding with PXL info only
 - Assumes reasonable background environment
 - See if accidentals level is manageable
 - Prove some Event vertex capabilities with PXL only
 - Prove some TPC+PXL tracking capabilities (even with excessive ghosting)
 - Run Calibration codes
- IF the above are indeed the case*:
 - Run in Mercedes (low_pt) configuration for DO x-section measurement
 - Run in Join (high_pt) configuration for DO R_{CP} at intermediate pt
 - And why not give v2 a shot !?

* Assuming a multi-week Au-beam run

Single track efficiency and ghosting

* Assuming everything else is ideal

What is this geometry for?

- A realistic Y2013 geometry for the PXL prototype can be used
 - As a basis for Y2014 (full HFT) geometry
 - To perform realistic simulations for performance in general
 - Exercise geometry (alignment) codes
 - VMC environment is preferred
 - At some point put it in track embedding chain for physics efficiency calculations
- Next stop Y2014/Run-14
 - SSD/IST come in
 - System becomes more complex
 - Partial remodeling of the SSD, from scratch modeling of IST
 - + services
 - We plan a draft in a couple of moths

