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WhyWhy
 

a a digitizerdigitizer
 

tooltool
 

for MAPS ?for MAPS ?

•
 

2 mains motivations
–

 
Beeing

 
able to foresee

 
the response

 
of a future chips



 

Help to optimize

 

a design for a given

 

application, e.g.
N bits of ADCs, Discriminator

 

thresholds, occupancy, hit separation, Pitch, number

 

of layers, 
zero

 

suppression stage, etc.
–

 
Test model for simulation


 

Goal: being

 

able to provide

 

models/algorithms

 

easily

 

transportable in real experiment
e.g. fast

 

or full simulation for STAR-HFT


 

Other

 

experiments/projects

 

will/may

 

need

 

also

 

a digitizer
CBM, AIDA, ILC, ALICE upgrade, superB, etc.

•
 

1 local long term
 

goal
–

 
Get

 
a full simulation chain

 
for alignment

 
studies



 

AIDA project

 

(European

 

project

 

«

 

Advanced Infrastructures for Detectors and 
Accelerators) 



 

W.P.9.3: Build

 

a telescope

 

+ target

 

+ vertex detector sector


 

Geant

 

4 + digitizer

 

+ tracking/alignement/vertexing
•

 
1 road map
–

 
Build

 
a data driven

 
model 



 

to take

 

advantage

 

of our

 

knowledge

 

coming

 

from

 

~30 beam

 

test campaigns


 

Because

 

a pure realistic

 

analytical

 

model is

 

difficult

 

to build
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WhatWhat
 

do do wewe
 

wantwant
 

to to simulatesimulate
 

??

•
 

Step
 

1: incident particle
 

generation
–

 

Nature, energy

 

spectrum, incident angle spectrum


 

Beam

 

test, beamstrahlung

 

spectrum

 

for ILC, etc.

•
 

Step
 

2: energy
 

deposition
 



 
charge generation

–

 

Landau law

 

(MPV = 80 e-

 

/ um)

•
 

Step
 

3: charge transport up to the N-well
 

diodes
–

 

Thermal diffusion 

 

depleted

 

detectors
–

 

Charge sharing between

 

pixels enhanced
–

 

Recombination, charge collection efficiency
–

 

Reflexion

 

at

 

the epi/substrate

 

interface
–

 

Noise, fake

 

pixels

•
 

Step
 

4: digital part
–

 

Discriminator

 

/ ADC dynamic

 

range


 

FPN, temporal noise.

–

 

Zero

 

suppression stage

•
 

Step
 

5: clustering
 

algorithms
–

 

Resolution, hit separation

•
 

Step
 

6: (not included) tracking, vertexing
 

etc.

•
 

Test Criteria: 
–

 

Realistic

 

performances


 

Efficiency, 


 

resolution, 


 

fake

 

rate

–

 

Charge sharing


 

occupancy

 

(multiplicity)


 

Hit separation
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DIGMAPS: a DIGMAPS: a standalonestandalone
 

digitizerdigitizer
 

tooltool

•
 

MAPS Digitizer
 

(DIGMAPS)
–

 
From

 
particle

 
generation

–
 

To the digitizer

•
 

Library running in root
–

 
Easy

 
to load

–
 

Easy
 

to run

–
 

All output stored
 

in Root
 

format
 .x Read.C

 
; .x Plot.C

•
 

Input data cards
 

to compare any
 

configurations

DIGMAPS  myDIGMAPS("name","title", "~/mydircode/","input.txt","~/myoutputdir","output.txt","foresee")
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• Many
 

input parameters:
Beam

 

(flux, angle)
MAPS (pitch, noise, epi. Layer)
Charge transport Model
ADC/discri

 

threshold
Etc.

(under
 

developpment)
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DIGMAPS: DIGMAPS: RootRoot--Html docHtml doc
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StepStep
 

2: 2: EnergyEnergy
 

depositiondeposition

•
 

Potential
 

tricky
 

issues:
–

 

What

 

about charge created

 

inside

 

the diode ? 


 

(increases

 

locally

 

effective epi

 

thickness)

–

 

Is the Epitaxial

 

layer thickness

 

really

 

known

 

?


 

Exact doping profile not known

 

in principle

–

 

Is GEANT4 able to compute

 

energy

 

deposition

 

in very

 

thin

 

material

 

(10-20 um) ?

EnergyEnergy
 

depositiondeposition
 

in in thinthin
 

siliconsilicon
 

devicesdevices
 

((A.GeromitsosA.Geromitsos))

.

 

GEANT4
Number

 
of e-

created
 

per m
(MPV value)

Effective «
 

Thickness
 

»
 

of the epitaxial
 

layer (m)
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StepStep
 

2: 2: EnergyEnergy
 

depositiondeposition
 

in in thinthin
 

siliconsilicon
 

devicesdevices
 

((A.GeromitsosA.Geromitsos))

•
 

(large values obtained
 

with
 

large incident angle)
–

 
GEANT4 underestimate

 
charge creation

 
for thin

 
devices



 

Charge creation

 

taken

 

from

 

test beam

 

data

.

 

GEANT4

Large incident angle
= increased

 
effective 

thickness
of the epi. layer


 

Chose a Landau with
 

a MPV=80 e-/m
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= Impact position

= Collecting
 

diodes
= seed

 
diode

= seed-impact distance

SeedSeed
 

impact distance and charge collectionimpact distance and charge collection
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Charge vs Charge vs seedseed--impact distanceimpact distance

•

 

Charge in seed

 

depends

 

highly

 

on impact position but total charge is

 

«

 

almost

 

»

 

constant
–

 

Global Charge collection efficiency

 

is

 

constant as a first good approximation
–

 

We

 

can

 

separate

 

charge creation

 

and charge collection in 2 independent

 

steps.
–

 

Charge creation

 

can

 

be

 

parametrized

 

with

 

on only

 

one parameter

 

= Effective epitaxial

 

thickness
for a given

 

prototype

Impact distance from

 

the seed

 

diode (m)

Collected

 

charge (e-)
In seed

 

pixel

Collected

 

charge (e-)
in the whole
cluster (5x5)
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StepStep
 

3: Charge transport and charge collection3: Charge transport and charge collection

•
 

Goal
–

 
Build

 
a data driven

 
model with

 
a reasonable

 
number

 
of parameters

•
 

Physical
 

parameters:
–

 
Collecting

 
charge diode (N-Well)



 

pitch


 

Surface


 

Depleted

 

region
–

 
Doping profile


 

Epitaxial

 

layer thickness


 

Epitaxial

 

layer –

 

Substrate

 

interface
Perfect

 

reflexion

 

of charge ?


 

Charge Collection Efficiency
Is it

 

constant ?

•
 

From
 

our
 

data
–

 
Total collected

 
charge (e-)

–
 

Charge distribution between
 

pixels
–

 
Noise (e-)

–
 

Charge collection efficiency
 

(>~90-95%)


 

Effective epitaxial

 

thickness
–

 
ADC gain and dynamic

 
range

Not always
 

known
 

perfectly
(e.g. doping profile)

Measurable
 

from
lab

 
and beam

 
test

(easier
 

with
 

analog
 

ouput
 

!)
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StepStep
 

3: 3: PotentialPotential
 

profileprofile

•
 

Schematical
 

profile
–

 
Ideal

 
case

Measure
 

an effective epitaxial
 

layer
For each

 
prototype

depth
substrate epi.layer P/N well

Potential(V)N-well

P-well

depth
substrate epi.layer P/N well

Potential(V)

N-well

P-well

Not so
 

sharped
 

region

depleted
 

region
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StepStep
 

3: 3: segmentisationsegmentisation

•
 

Divide
 

the track
–

 

N segments i
–

 

Qi

 

= Qtot

 

/N

•
 

Qi

 

can
 

be
 

as low
 

as 1 e-
–

 

More CPU
–

 

More detailed
–

 

Option assumed

 

in 
the following

 

slides
•

 

compute

 

25 probabilities

 

of
Charge Qi to reach

 

pixel j(1,25)

•
 

Model independant
 

of «
 

z
 

»
 

dimension
–

 

But able to deal with

 

tracks

 

having

 

  0

Epi. layer
Qi



z

Qi
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StepStep
 

3: 3: WhatWhat
 

wewe
 

know/observe know/observe fromfrom
 

ourour
 

datadata

•
 

Results
 

taken
 

from
 

Mimosa 9/18 chips 
–

 
(AMS-opto

 
0.35, not HR)

–
 

Analog
 

output (actually
 

12bits ADC)
–

 
10,20,30,40 um

 
pitch

•
 

Informations provided
 

by beam
 

test/lab
 

test
–

 
Gain (e-/ADC)

–
 

Charge collection efficiency
–

 
Effective epitaxial

 
layer thickness

Obtained
 

from
 

cluster total charge

–
 

Performances
 S/N, efficiency, fake

 
rate, resolution, multiplicity, etc.
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WhatWhat
 

about chips about chips withwith
 

digital output ?digital output ?

•
 

Ultimate
 

sensor
 

for STAR HFT:
–

 
No charge recorded

 
but threshold

 
scans are available.

–
 

Test beam
 

already
 

performed

•
 

Benchmarks
–

 
Efficiency/fake

 
rate vs discriminator

 
threshold

–
 

Multiplicity
 

distribution vs discriminator
 

threshold
–

 
Resolution

•
 

Goal: 
–

 
realistic

 
occupancy, resolution, fake

 
rate, efficiency, double hit 

separation.
–

 
Avoid

 
if possible a deterministic

 
response

 
of the digitizer.
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STAR STAR ––
 

UltimateUltimate
 

: Performances: Performances

• Test Beam @ CERN-SPS (July 
2011), 120 GeV pion beam

– Goal: approach STAR running 
conditions


 

T = 30 oC


 

Chip irradiated @ 150 kRad


 

Read-out time = 198 s

• Results
– Efficiency ~99.9% with a ~<10-6 

fake rate
– Spatial resolution ~ 3.7 m
– Uniformity checked

• Under study / to be done
– Fluence of > 3x1012 neq /cm2 (already 

tested with previous prototype M26)
– Large incident angle

Ultimate sensor fulfilling STAR 
requirements demonstrated
Ultimate sensor fulfilling STAR 
requirements demonstrated
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CollectedCollected
 

charge vs impact position (charge vs impact position (analoganalog
 

output case)output case)

•
 

For each
 

event
–

 
Impact position from

 
the 

telescope
 

defines
 

the origin
–

 
Store 25 x 3D vectors


 

{x(m), y(m), Q(e-)}

•
 

Plot all this
 

vectors
 

in a 
Single 3D plot

•
 

All the useful
 

information 
should

 
be

 
contained

 
in this

 
plot

–
 

Use it
 

as a probability
 

density
 

function

Impact position

X position

Y position
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CollectedCollected
 

charge vs impact position (2)charge vs impact position (2)

•
 

Example
 

(30 um
 

pitch)

(x2+y2)

Q
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CollectedCollected
 

charge vs impact position (4)charge vs impact position (4)

•
 

Take
 

the profile of the previous
 

plots and fit it
 

with
–

 
F(x,y) = sum

 
of 2 x 2Dgaussian

2
2

22

2
1

22

22 
yxyx

ewe









Defines
 

a probabilty
 

density
 

function
 

for charge Qi
to reach

 
pixel j which

 
is

 
at

 
(x,y) w.r.t. the impact

(0,0) = 


 

25 probabilities
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CollectedCollected
 

charge vs impact position (3)charge vs impact position (3)

10 m pitch
20 m pitch

30 m pitch 40 m pitch
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CollectedCollected
 

charge vs impact position (5)charge vs impact position (5)

•
 

Linearity
 

vs pitch 
 

5 parameters
 

for all pitches

2
2

22

2
1

22

22 
yxyx

ewe









21

w

Pitch (m)



Are Are resultsresults
 

close to real data ?close to real data ?
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DIGMAPS: DIGMAPS: SomeSome
 

preliminarypreliminary
 

resultsresults
 

(20 (20 umum
 

pitch)pitch)

•
 

Nothing
 

optimized
 

!
–

 
DIGMAPS model

–
 

DATA

•
 

Mulitiplicity
 

distribution
–

 
Number

 
of pixels in cluster

–
 

For different
 

ADC cuts

1 ADC unit ~ 5.9 e-
(Noise = 9.2 e-) 

 1 ADC units  2 ADC units  3 ADC units

 4 ADC units

 5 ADC units
 30 e-

 6 ADC units

 9 ADC units 8 ADC units 7 ADC units

 10 ADC units



 5 ADC units



HFT-Software workshop, September 2011 Auguste Besson 24

QSeed

 

/Qtotal Q1stcrown

 

/Qtotal

Q2ndcrown

 

/Qtotal Q4neighbours

 

/Qtotal

M18 (10M18 (10m pitch)m pitch)DIGMAPS model
DATA

Qseed

Qtotal
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QSeed

 

/Qtotal
Q1stcrown

 

/Qtotal

Q2ndcrown

 

/Qtotal Q4neighbours

 

/Qtotal

M9 (20M9 (20m pitch)m pitch)DIGMAPS model
DATA

Qseed

Qtotal
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QSeed

 

/Qtotal Q1stcrown

 

/Qtotal

Q2ndcrown

 

/Qtotal Q4neighbours

 

/Qtotal

M9 (30M9 (30m pitch)m pitch)DIGMAPS model
DATA

Qseed

Qtotal
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QSeed

 

/Qtotal
Q1stcrown

 

/Qtotal

Q2ndcrown

 

/Qtotal Q4neighbours

 

/Qtotal

M9 (40M9 (40m pitch)m pitch)DIGMAPS model
DATA

Qseed

Qtotal
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ResolutionResolution
 

((m) m) 

•
 

E.g. M9, 20 um
 

pitch

DIGMAPS model

Not so
 

good agreement for
larger

 
pitch…

DIGMAPS model 
(CenterofGravity)

 

~ 1.7 m
DATA 
(CenterofGravity)

 

~ 1.8 m
DIGMAPS
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StepStep
 

4/5 (ADC and cluster 4/5 (ADC and cluster algorithmsalgorithms))

•
 

Under development
–

 
Only

 
perfect

 
clustering

 
at

 
the moment

–
 

Only
 

perfect
 

ADC/discri.
 Realistic

 
Noise treatment

 
to be

 
added

FPN + Temporal Noise

 Zero
 

suppression to be
 

added

FPN / Temporal Noise
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Performances: Performances: summarysummary

•
 

Fit / model not optimized
–

 
Address

 
more carefully

 
the weight

 
of 2nd

 

crown pixels
 small

 
number

 
of entries 

 
uncertainty

 
underestimated

 Reduce
 

range of the 2D fit ?

–
 

Focus should
 

me made on the response
 

of the 8 neighbouring
 

pixels
 Determines

 
multiplicity

 
(particularly

 
for digitized

 
chips)

 Determines
 

resolution
 Determines

 
hit separation

 
performances

–
 

Global response
 

is
 

already
 

encouraging
 Limited number

 
of parameters

 
(Noise, epitaxial

 
layer + 2D double gaussian)

Multiplicity
 

can
 

be
 

reproduced
 Still

 
many

 
optimization

 
to be

 
done

–
 

Model could
 

be
 

simplified
 each

 
Qi

 

of a given
 

segment has to be
 

randomly
 

adressed
 

to one pixel
Option: suppress

 
random

 
part and charge only

 
with

 
PDF values.
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Outlook: Outlook: implementingimplementing
 

a a digitizerdigitizer
 

in HFTin HFT--softwaresoftware

•
 

DIGMAPS = Tool
 

under
 

development
 

but allows
 

already
 

many
 

studies:
–

 

sensor(s)/models

 

with

 

a digitised

 

output
–

 

any

 

other

 

charge transport model


 

Optimize

 

parametrized

 

models

 

for fast

 

sim
–

 

Optimize

 

ADCs/discris


 

N bits, dynamic

 

range, Noise, etc.
–

 

clustering

 

algorithms


 

chip occupancy


 

Hit separation

 

performances
–

 

Zero

 

suppression blocks, etc.
–

 

Study

 

incident angle effects
–

 

CPU performances vs models
•

 
HFT simulation (Fast/full simulation)
–

 

Simulating

 

charge transport can

 

be

 

CPU time consuming


 

You should

 

define

 

which

 

amount

 

of complexity/computing

 

you

 

can

 

afford.
–

 

A lot of possible algorithms/approachs


 

DIGMAPS can

 

help to decide

 

which

 

precision

 

you

 

want


 

Multiplicity

 

vs incident angle/charge deposition/impact position = difficult

 

to parametrize
–

 

Nevertheless, building a physical

 

model is

 

out of reach


 

Data driven

 

approach


 

Use test beam

 

data as input/guideline is

 

the key



Back upBack up
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UltimateUltimate
 

SensorSensor
 

for STAR Vertex for STAR Vertex 
detector (1)detector (1)

•

 

STAR PIXL upgrade (physics run in 2014)
–

 

Requirements


 

~ 150 kRad

 

and few 1012

 

neq

 

/cm²/year


 

Temperature 30-35 oC

 

(air flow cooling only)


 

Power consumption ~130 mW/cm²


 

Spatial resolution < 10 µm


 

Integration time ~< 200 µs to cope with occupancy 
(~200 hits / 4 cm2

 

sensor / read-out cycle)
–

 

Design


 

2 layers (2.5/8 cm radius)


 

40 ladders: 50 m silicon, Flex kapton

 

/ aluminium

 

cable


 

10 Mimosa chips/ladder 

 

370 x 106

 

pixels


 

0.37% X0

 

per layer

•

 

Ultimate (alias Mimosa 28)
–

 

Final sensor for the upgrade of STAR pixel layers of the vertex 
detector


 

Design process Austria Micro System AMS-0.35 m -

 

OPTO, 4 metal-

 
and 2 poly-

 

layers


 

15 μm

 

thick epi. layer, High-Resistivity substrate (400 Ohm.cm)


 

Radiation tolerant structures


 

928 (rows) x 960 (columns) pixels, 20.7 μm pitch 

 

~20 x 23 mm2



 

Fast binary readout, zero suppression


 

200 µs

 

read-out time: Suited for 106

 

part/cm2/s 2.5 cm
Inner layer

8 cm radius
Outer layer

End view

Centre of the
beam pipe

2.5 cm
Inner layer

8 cm radius
Outer layer

End view

Centre of the
beam pipe

20 cm

10 chips/ladder
40 ladders

Cantilevered
support

0.37% X0 / ladder

RO buffe
rs

/ driv
ers

50 m thinned

 

silicon

 
ladder

 

on a flex

 

kapton

 

/ 
aluminium cable

Chip delivered in spring 2011
First data taking in 2013
First vertex detector equipped with CMOS pixel sensors !

Chip delivered in spring 2011
First data taking in 2013
First vertex detector equipped with CMOS pixel sensors !
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AIDAAIDA

•
 

AIDA (EU-FP7 WP9.3) test beam
 

infrastructure (2014)
–

 
Large area beam

 
tel. (~6x4 cm2)

–
 

Alignment
 

Investigation Device
 

(AID)
 Reproduce

 
a VTX detector sector

 Double sided
 

ladders
 

mounted
 

on precise
 

adjustable
 

stages

–
 

Thermo-mechanical
 

studies
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10 10 umum
 

pitchpitch
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20 20 umum
 

pitchpitch
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30 30 umum
 

pitchpitch
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40 40 umum
 

pitchpitch
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