DIGMAPS: a standalone tool to study digitization an overview of a digitizer strategy for CMOS/MAPS sensors

A.Besson, IPHC-Strasbourg

thanks to A.Geromitsos and J.Baudot

- Motivations for a CMOS sensor digitizer, task list.
- DIGMAPS: presentation of the tool. Example.
- Summary and outlook

Why a digitizer tool for MAPS ?

• 2 mains motivations

- Beeing able to foresee the response of a future chips
 - > Help to optimize a design for a given application, e.g.
 - N bits of ADCs, Discriminator thresholds, occupancy, hit separation, Pitch, number of layers, zero suppression stage, etc.
- Test model for simulation
 - Goal: being able to provide models/algorithms easily transportable in real experiment e.g. fast or full simulation for STAR-HFT
 - Other experiments/projects will/may need also a digitizer CBM, AIDA, ILC, ALICE upgrade, superB, etc.

• 1 local long term goal

- Get a full simulation chain for alignment studies
 - AIDA project (European project « Advanced Infrastructures for Detectors and Accelerators)
 - > W.P.9.3: Build a telescope + target + vertex detector sector
 - Geant 4 + digitizer + tracking/alignement/vertexing
- 1 road map
 - Build a data driven model
 - \succ to take advantage of our knowledge coming from ~30 beam test campaigns
 - > Because a pure realistic analytical model is difficult to build

What do we want to simulate ?

- Step 1: incident particle generation
 - Nature, energy spectrum, incident angle spectrum
 - > Beam test, beamstrahlung spectrum for ILC, etc.
- Step 2: energy deposition ⇒ charge generation
 - Landau law (MPV = 80 e- / um)
- Step 3: charge transport up to the N-well diodes
 - Thermal diffusion ≠ depleted detectors
 - Charge sharing between pixels enhanced
 - Recombination, charge collection efficiency
 - Reflexion at the epi/substrate interface
 - Noise, fake pixels
- Step 4: digital part
 - Discriminator / ADC dynamic range
 - > FPN, temporal noise.
 - Zero suppression stage
- Step 5: clustering algorithms
 - Resolution, hit separation
- Step 6: (not included) tracking, vertexing etc.

- Test Criteria:
 - Realistic performances
 - Efficiency,
 - ➤ resolution,
 - ➢ fake rate
 - Charge sharing
 - occupancy (multiplicity)
 - Hit separation

DIGMAPS: a standalone digitizer tool

- MAPS Digitizer (DIGMAPS)
 - From particle generation
 - To the digitizer
- Library running in root
 - Easy to load
 - Easy to run

```
gROOT->ProcessLine(".L digaction.cxx+");
gROOT->ProcessLine(".L digadc.cxx+");
gROOT->ProcessLine(".L digbeam.cxx+");
gROOT->ProcessLine(".L digplane.cxx+");
gROOT->ProcessLine(".L digparticle.cxx+");
gROOT->ProcessLine(".L digreadoutmap.cxx+");
gROOT->ProcessLine(".L digcluster.cxx+");
gROOT->ProcessLine(".L digcluster.cxx+");
gROOT->ProcessLine(".L diginitialize.cxx+");
gROOT->ProcessLine(".L diginitialize.cxx+");
gROOT->ProcessLine(".L dignaps.cxx+");
gROOT->ProcessLine(".L digmaps.cxx+");
```

DIGMAPS myDIGMAPS("name","title", "~/mydircode/","input.txt","~/myoutputdir","output.txt","foresee")

- All output stored in Root format

➤ .x Read.C ; .x Plot.C

```
Int_t myconfig = 1;
myDIGMAPS2.PrintConfigurations() ;
myDIGMAPS2.PlotAConfiguration(myconfig,1);
```

• Input data cards to compare any configurations

// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	++-+-
// This is a Configuration File for Silicon Tracking Analysis DIGMA	PS Package
// created -> 18/03/2011 // Authon - Augusta Resson abesson@in2n3 fr	//basic model
// +++++++++++++++++++++++++++++++++++	//sigma of the gaussian width dispersion of charge at 10 microns depth
//	//Chose Model (1=Lorentz2D , 2=Gauss2D)
// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	ChargeModel: 2 //Lorentz2D model
// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	//C term of the Lorentz width dispersion
<pre>// chose the action -> foresee = model result ; train = adjust/fit // plat = fill bictograms from the trace</pre>	Lorentz/DModel_Cp0: 0.660/
//Doit "foresee"	Lorentz2DModel_RangeLimit_InPitchUnit: 2.5
Model: "basic"	// Gatts2D Model
// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	Gauss20Model_signal_cp0: 1.12
// BEAM Parameter	Gauss2DModel_sigmal_cpl: 0.35
//	Gauss2DModel_sigma2_Cp1: 0.83
NumberOfEvents: 10000	Gauss20Model_weight: 0.34
1=realistic beam with random number of particle per event	// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
//2=1 particle per event with a hit in a central pixel	// -+-+-+-+-+-+-+-+++++++++++++++++++++
//number of particles per mm^2 on the Plane per event (Lambda facte	NADC: 3
ParticleDensity: 5.0 //ParticleDensityWidth 0.5	// ADC parameters
// incident angle in degrees in cylindrical coordinates (theta and	// LSB, Electron_Conversion and ADC_thresholds are in Noise multiple units (e.g. $2.0 = 2.0$
MAngles: 3 ThetaIncidentDeg 0.0.10.0.20.0	// There are 2 different ways to set the ADC
PhilipcidentDeg 0.0 0.0 45.0	<pre>// 1/ ADC_linear = 1 (the response is linear, so setting the LSB and</pre>
// -+-+-+- +-+-+-+-++++-+-+- +-+-+-+-+-+-	<pre>// the Electron Conversion factor allow to compute all thresholds.</pre> // = thresholds will be = LSB LSB+1xElectron conversion LSB+2xElectron conversion etc
// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	// LSB= 1.5 = threshold of the first significant bit
//pixel pi <u>tch in X and Y in mic</u> rons	<pre>// Electron_Conversion= 1.5 // ADC_thresholds= -</pre>
NGeom: 4	// OR OR
PrtchY: 10.00 20.00 30.00 40.00	// LSB= -
A/Noise in electrons	<pre>// Electron_Conversion= - // ADC thresholds= 2.0 4.0 5.0 etc.</pre>
//- epitaxial thickness in microns	//ADC 1
Epitaxia+Hnickness: 12.65 10.80 8.69 7.78	ADC_linear: 0
//number of pixels	LSB: -
NpixelsX: 21	ADC_thresholds: 5.0
//Chip temperature	//ADC 2 Nbits: 12
NTemperature: 1	ADC_linear: 1 • Many input narameters'
//CHARGE TRANSPORT	Electron_Conversion: 0.64
//ionization energy (eV) TonizationEnergy: 3.6	$ADC_thresholds: - Beam (flux, angle)$
//Starting Segment size (in microns)	
SegmentSize: 0.1 //Maximum Segment size (in microns)	\rightarrow MAPS (pitch, noise, epi. Layer)
MaximumSegmentSize: 1.0	Electron_Conversion: 0.60
//Maximum Charge Per Segment (in electrons) MaximumChargePerSegment: 1.0	
//Diffusion Maximum Range in X and Y (in pitch units)	>ADC/discri threshold
DiffusionMaximumRangeInY: 2.5	
//Reflexion Coefficient on the subtrat-epi border (1.0 means 10 ReflexionCoefficient: 1.0	DO%) NOT USED >Etc.
	(under development)
	(under developpment)

€1.Branch("pg", [pg, "pg/F");	ROOT Mersete the (I.e., the tree are in the interest, the single tree are in the electronic tree are interest the electronic tree are interest it demonstrapy . Appl. put 1:	
Quick Links: ROOT Homepage Class Index (UNKNOWN PRODUCT)	Quick Links: ROOT Homepage Class index Source: header file source file	Class Hierarchy Search documentation Search Inheritance tree (.odf) viewVC header viewVC source
Class Index	Sections: class description function members	data members class charts
Modules CODE Jump to D DIGAC DIGB DIGC DIGE DIGH DIG	class DIGParticle: public TO	bject
DIGADC DIGADC DIGACtion DIGGeam DIGCluster DIGE DIGFitiolize:ActionParameter_t DIGInitialize:SchonParameter_t DIGInitialize:SchonParameter_t DIGInitialize:PlaneParameter_t DIGInitialize:PlaneParameter_t DIGInitialize:BlaneParameter_t DIGInitialize:SchonParameter_t DIGInitialize:SchonParameter_t DIGInitialize:SchonParameter_t DIGInitialize:SchonParameter_t DIGInitialize:SchonParameter_t DIGInitialize:SchonParameter_t DIGInitialize:SchonParameter_t DIGINAPS DIGPane DIGReadoutmap	Function Members (Methods) public: DIGParticle () DIGParticle (DIGParticle& adigparticle) DIGParticle (Float_t EntryX, Float_t En Energy_deposited) virtual ~DIGParticle () void AddPixel (Float_t AnalogCharge, Int_t Fl void AddRandomNoise (DIGPlane* myDIG void AnalogToDigitalconversion (DIGADC static TClass* Class () virtual void Clear (Option_t* = ") void ComputeChargeDeposition (Float_t Sl MaximumChargePerSegment) void ComputeChargeTransport (DIGPlane* Double_t GaussianLaw (Double_t mean, Double) vector <float_p ()<br="" getanalogcharge="">vector<float_p ()<br="" getanalogcharge="">Float_t GetEntryX () Float_t GetEntryX () Float_t GetEntryX () Float_t GetEntryZ () Float_t GetExitX () Float_t GetExitX () Float_t GetExitZ () Int_t GetNizels () Int_t GetNizels () Int_t GetNizels () Int_t GetPixelMap () Int_t GetPixel</float_p></float_p>	<pre>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>
HFT-Software worksh	vector <float_t> GetSegmentX () vector<float_t> GetSegmentY ()</float_t></float_t>	6

Step 2: Energy deposition

- Potential tricky issues:
 - What about charge created inside the diode ?
 - (increases locally effective epi thickness)
 - Is the Epitaxial layer thickness really known ?
 - Exact doping profile not known in principle
 - Is GEANT4 able to compute energy deposition in very thin material (10-20 um) ?

Energy deposition in thin silicon devices (A.Geromitsos)

Step 2: Energy deposition in thin silicon devices (A.Geromitsos)

- (large values obtained with large incident angle)
 - GEANT4 underestimate charge creation for thin devices
 - Charge creation taken from test beam data

\Rightarrow Chose a Landau with a MPV=80 e-/µm

HFT-Software workshop, September 2011

of the epi. layer

Seed impact distance and charge collection

HFT-Software workshop, September 2011

Auguste Besson

Charge vs seed-impact distance

- Charge in seed depends highly on impact position but total charge is « almost » constant
 - Global Charge collection efficiency is constant as a first good approximation
 - We can separate charge creation and charge collection in 2 independent steps.
 - Charge creation can be parametrized with on only one parameter = Effective epitaxial thickness for a given prototype

HFT-Software workshop, September 2011 Auguste Besson

Step 3: Charge transport and charge collection

•	Goal	
	 Build a data driven model with a reasonable number of parameters 	
•	Physical parameters:	
	 Collecting charge diode (N-Well) pitch Surface Depleted region Doping profile Epitaxial layer thickness Epitaxial layer – Substrate interface Perfect reflexion of charge ? Charge Collection Efficiency Is it constant ? Not always known perfectly (e.g. doping profile) 	
•	 Total collected charge (e⁻) Charge distribution between pixels Noise (e⁻) Charge collection efficiency (>~90-95%) Effective epitaxial thickness ADC gain and dynamic range 	!)

Step 3: Potential profile

depleted region

HFT-Software workshop, September 2011

Auguste Besson

Step 3: segmentisation

- Divide the track
 - N segments i
 - $Q_i = Qtot /N$
- Q_i can be as low as 1 e-
 - More CPU
 - More detailed
 - Option assumed in the following slides
- compute 25 probabilities of Charge Qi to reach pixel j(1,25)

- Model independant of « z » dimension
 - But able to deal with tracks having $\theta \neq 0$

Ζ

Step 3: What we know/observe from our data

- Results taken from Mimosa 9/18 chips
 - (AMS-opto 0.35, not HR)
 - Analog output (actually 12bits ADC)
 - 10,20,30,40 um pitch
- Informations provided by beam test/lab test
 - Gain (e-/ADC)
 - Charge collection efficiency
 - Effective epitaxial layer thickness
 - Obtained from cluster total charge
 - Performances
 - ➤ S/N, efficiency, fake rate, resolution, multiplicity, etc.

What about chips with digital output ?

- Ultimate sensor for STAR HFT:
 - No charge recorded but threshold scans are available.
 - Test beam already performed
- Benchmarks
 - Efficiency/fake rate vs discriminator threshold
 - Multiplicity distribution vs discriminator threshold
 - Resolution
- Goal:
 - realistic occupancy, resolution, fake rate, efficiency, double hit separation.
 - Avoid if possible a deterministic response of the digitizer.

STAR – Ultimate : Performances

- Test Beam @ CERN-SPS (July 2011), 120 GeV pion beam
 - Goal: approach STAR running conditions
 - ➤ T = 30 °C
 - Chip irradiated @ 150 kRad
 - Read-out time = 198 μs
- Results
 - Efficiency ≥~99.9% with a ~<10⁻⁶
 fake rate
 - Spatial resolution ~ 3.7 μ m
 - Uniformity checked
- Under study / to be done
 - Fluence of > 3x10¹² n_{eq}/cm² (already tested with previous prototype M26)
 - Large incident angle

Ultimate sensor fulfilling STAR requirements demonstrated

HFT-Software workshop, September 2011 Auguste Besson

Collected charge vs impact position (analog output case)

- For each event
 - Impact position from the telescope defines the origin
 - Store 25 x 3D vectors
 - > {x(µm), y(µm), Q(e⁻)}

 Plot all this vectors in a Single 3D plot

- All the useful information ^L should be contained in this plot
 - Use it as a probability density function

Collected charge vs impact position (2)

• Example (30 um pitch)

All Pixel Charge vs impact position

Collected charge vs impact position (4)

- Take the profile of the previous plots and fit it with
 - $F(x,y) = sum of 2 \times 2Dgaussian$

Collected charge vs impact position (3)

 $30 \ \mu m$ pitch

40 μ m pitch

Collected charge vs impact position (5)

• Linearity vs pitch ⇒ 5 parameters for all pitches

Are results close to real data ?

DIGMAPS: Some preliminary results (20 um pitch)

HFT-Software workshop, September 2011

DIGMAPS model

M18 (10µm pitch)

DIGMAPS model

M9 (20µm pitch)

DIGMAPS model DATA

M9 (30µm pitch)

3150

186.1

163.1

0.002546

 116 ± 52.0

23.45 ± 30.46

10000

231.7

0.006441

476.7 / 588

 126.2 ± 0.6

 27.07 ± 0.32

 0.07278 ± 0.00112

3163

0.5359

3163

10000

0.3781

0

0

0

0

222

10

0.08832/295

0.08361± 0.13310

DIGMAPS model

M9 (40µm pitch)

Resolution (µm)

• E.g. M9, 20 um pitch

HFT-Software workshop, September 2011

Auguste Besson

pitch (microns)

Step 4/5 (ADC and cluster algorithms)

- Under development
 - Only perfect clustering at the moment
 - Only perfect ADC/discri.
 - Realistic Noise treatment to be added FPN + Temporal Noise
 - Zero suppression to be added

FPN / Temporal Noise

Performances: summary

- Fit / model not optimized
 - Address more carefully the weight of 2nd crown pixels
 - ➤ small number of entries ⇒ uncertainty underestimated
 - ➢ Reduce range of the 2D fit ?
 - Focus should me made on the response of the 8 neighbouring pixels
 - Determines multiplicity (particularly for digitized chips)
 - Determines resolution
 - Determines hit separation performances
 - Global response is already encouraging
 - Limited number of parameters (Noise, epitaxial layer + 2D double gaussian)
 - Multiplicity can be reproduced
 - ➤ Still many optimization to be done
 - Model could be simplified
 - \succ each Q_i of a given segment has to be randomly adressed to one pixel
 - > Option: suppress random part and charge only with PDF values.

Outlook: implementing a digitizer in HFT-software

- DIGMAPS = Tool under development but allows already many studies:
 - sensor(s)/models with a digitised output
 - any other charge transport model
 - > Optimize parametrized models for fast sim
 - Optimize ADCs/discris
 - > N bits, dynamic range, Noise, etc.
 - clustering algorithms
 - chip occupancy
 - Hit separation performances
 - Zero suppression blocks, etc.
 - Study incident angle effects
 - CPU performances vs models
- HFT simulation (Fast/full simulation)
 - Simulating charge transport can be CPU time consuming
 - > You should define which amount of complexity/computing you can afford.
 - A lot of possible algorithms/approachs
 - > DIGMAPS can help to decide which precision you want
 - > Multiplicity vs incident angle/charge deposition/impact position = difficult to parametrize
 - Nevertheless, building a physical model is out of reach
 - Data driven approach
 - > Use test beam data as input/guideline is the key

Back up

Ultimate Sensor for STAR Vertex detector (1)

• STAR PIXL upgrade (physics run in 2014)

- Requirements

- \rightarrow ~ 150 kRad and few 10¹² n_{eq}/cm²/year
- Temperature 30-35 °C (air flow cooling only)
- Power consumption ~130 mW/cm²
- \succ Spatial resolution < 10 μ m
- > Integration time \sim < 200 µs to cope with occupancy (\sim 200 hits / 4 cm² sensor / read-out cycle)
- Design
 - > 2 layers (2.5/8 cm radius)
 - \succ 40 ladders: 50 μ m silicon, Flex kapton / aluminium cable
 - ➢ 10 Mimosa chips/ladder ⇒ 370 x 10⁶ pixels
 - > 0.37% X_0 per layer
- Ultimate (alias Mimosa 28)
 - Final sensor for the upgrade of STAR pixel layers of the vertex detector
 - \blacktriangleright Design process Austria Micro System AMS-0.35 μm OPTO, 4 metal-and 2 poly- layers
 - > 15 µm thick epi. layer, High-Resistivity substrate (400 Ohm.cm)
 - Radiation tolerant structures
 - > 928 (rows) x 960 (columns) pixels, 20.7 µm pitch \Rightarrow ~20 x 23 mm²
 - Fast binary readout, zero suppression
 - ightarrow 200 µs read-out time: Suited for 10⁶ part/cm²/s

Chip delivered in spring 2011 First data taking in 2013 First vertex detector equipped with CMOS pixel sensors !

50 μm thinned silicon ladder on a flex kapton / aluminium cable

AIDA

- AIDA (EU-FP7 WP9.3) test beam infrastructure (2014)
 - Large area beam tel. (~6x4 cm2)
 - Alignment Investigation Device (AID)
 - Reproduce a VTX detector sector
 - Double sided ladders mounted on precise adjustable stages
 - Thermo-mechanical studies

HFT-Software workshop, September 2011 Auguste Besson

HFT-Softwa

HFT-Software worl

HFT-Software

HFT-Softwar