GEANT MODELING AND COMPARISON WITH SOLIDWORKS MODEL

Jonathan Bouchet

OUTLINE

Overview of the AgML implementation of the PIXEL detector (PXL), Middle Support Cylinder (MSC) and beam pipe.

1. Beam Pipe :
2. Comparison with BrushwellMann drawing.
3. Radiation length, dimensions.
4. PXL and MSC :
5. Comparison of SolidWorks model (SW) and GEANT modeling :
6. The details of implementation (naming, dimensions of volumes).
7. Check of radiation length.

Disclaimer : this talk only covers the details of the geometry implementation; STAR-software (reconstruction, etc..) issues are addressed in the next talk.

SW model of the PXL+MSC

Middle Support Cylinder = PST + PIT

AgML : Abstract geometry Model Language (*)

- STAR geometry is implemented in the Advanced Geant Interface (using GEANT3) :
- Mortran pre-processor.
- Several source codes are used for 1) simulation 2) conversion to TGeo (reconstruction) 3) conversion to Sti (tracking).
- Sti cannot handle complex shapes.
- No path forward to GEANT4, ...
- Change to AgML will allow :
- Use of better simulation packages (GEANT4).
- Unified geometry model : no differences in simulation, reconstruction and tracking.
- Remove dependence on Jurassic technologies such as Mortran and ZEBRA.
(*) J. Webb : -Collaboration Meeting, tracking review
-STAR upgrade workshop

REpresentation of radiation length

- Estimation of material budget for geometry dev13 [AgML].
- Use of the existing command line in STARSIM to plot the material for a given window $\eta, \phi, \mathrm{Rmin}$, Rmax.
- Use of StarBASE (*) code plot radiation length vs. η, ϕ :
- Parameters : η, ϕ ranges, binning , as well as the number of triggers per bins can be set up : more handy than the STARSIM command.
- It plots the radiation length for a given GEANT volume, not by choosing the [Rmin,Rmax] range from the STARSIM command.
- Both methods use 10 GeV geantinos.

1.New Beam Pipe

Figure 3. Prelininary new beam pipe.

- The input was the Brushwellman drawing.
- Coded as 3 sections of aluminum (edges) and beryllium (central part).
- For $|\eta|<1$, the estimated radiation length is $\sim 0.2-0.3 \% \mathrm{X}_{0}$

Figure3: "Effective Thickness of the HFT Beam Pipe.. Beavis, August 26, 2009"
*Beam pipe has been coded by Amilkar Quintero

DIMENSIONS OF THE BEAM PIPE

Note : the length of the flanges is arbitrary because it was not specified in the drawing.

				flange
Zrange (inches)	$-54.71 ;$	$-15.75 ;$	$31.5 ;$	$-55.71 ;$
Rmin;Rmax (inches)	$0.7875 ;$	0.8525	$0.8875 ;$	$0.7875 ;$
	0.8175	0.8525	$0.7875 ;$	
Material	Aluminum	Beryllium	Aluminum	Aluminum

Radiation length of the beam pipe

Material in rad.len vs pseudo-rapıdit. $\times 10^{=}$

Material in rad.len vs pseudo-rapidity

Material in rad.len vs phi

For $|\eta|<6$

For $|\eta|<1$

Radiation length of the beam pipe

- The dimensions (length, radii) are agree with the Brushwellman drawing.
- As seen in previous slide, there is more material budget for large Z :
- in the central region where the pixel stands, the radiation is very low.

CoMParison of The Radiation LengTh

Depth vs eta [PIPE]

Figure 3. Prelininary new beam pipe.

- The ordering of the radiation length profile vs. vertices positions is OK but the eta values of the change in profile are not completely agree
- Compatibility of both simulations?

COMPARISON BETWEEN METHODS USED TO PLOT THE RADIATION LENGTH

(

Material in rad.len vs pseudo-rapıdity

Material in rad.len vs phi

- The radiation length vs. η (top) and ϕ (bottom) shows the SAME profile for both methods.

2.PXL (SW)

- The input for the PIXEL (ladder + sector) dimensions/ shapes is the SW representation.
- Flemming has done a translation of SW model to TGeo geometry.
- It provides directly the shape, dimensions of the elements and then simplifies their implementation
 in AgML.
- The idea was to code 1 sector and then duplicate it x10

1st ITERATION : SECTOR SUPPORT + ACTIVE SILICON

This is the first version (in CVS since december) of the PXL in AgML.
Volume naming convention.

- $\underline{\text { PLAC }}=$ active silicon ladder : it was the name used in UPGR15.
- PXCA-PXCB-PXCC-PXCD,PXCE PXCF,PXGH,PXCH are the corners, starting from the bottom right (\uparrow) :
PiXel Corner A...
- PXTR-PXTM-PXTL are the
planes supporting the active silicon on the top :
PiXel Top Right, PiXel Top Middle, PiXel Top Left.
-PXTJ are the 2 planes joining the planes on the top :
PiXel Top Join

- PXLB, PXRB, PXIB are the planes on front of the beam pipe and between 2 sectors (Pixel Low Beam, Pixel Rear Beam, Pixel Inner Beam).

ALL LAYERS TOGETHER

ALCA : Aluminum Cable

SUMMARY OF MATERIAL BUDGET

$\begin{aligned} & \text { GEANT } \\ & \text { NAME } \end{aligned}$	piece	shape	Composition / mixture	Radiation length [cm]	Density $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$
PLAC	Silicon active	box	Si	9.36	2.33
SIFR	Silicon passive	box	Si	9.36	2.33
SIFL	Silicon passive	box	Si	9.36	2.33
GLUA	adhesive	box	$\begin{aligned} & \mathrm{O}(0.164) \\ & \mathrm{C}(0.763) \\ & \mathrm{H}(0.073) \end{aligned}$	34.7	1.2(*)
GLUB	adhesive	box	$\begin{aligned} & \mathrm{O}(0.164) \\ & \mathrm{C}(0.763) \\ & \mathrm{H}(0.073) \end{aligned}$	34.7	1.2(*)
GLUC	adhesive	box	$\begin{aligned} & \mathrm{O}(0.164) \\ & \mathrm{C}(0.763) \\ & \mathrm{H}(0.073) \end{aligned}$	34.7	1.2(*)
ALCA	Aluminum cable	box	Al	23.7(*)	2.7(*)
CBFK	Carbon Fiber backing	box	C	68(*)	$1.3\left({ }^{*}\right)$

Overview of the PIXEL

, REVIEW

PIXEL DETECTOR RADIATION LENGTH

Material in rad.len vs pseudo-rapidity

Material in rad.len vs pseudo-rapidity

Material in rad.len vs phi

Material in rad.len vs phi

For $|\eta|<3$

For $|\eta|<1$

PIXEL DETECTOR RADIATION LENGTH, For \mid ETA $\mid<.5$

Material in rad.len vs pseudo-rapıdity

Material in rad.len vs phi

- Peaks in the azimuthal profiles comes from tracks crossing the entire pixel support.
- Other small peaks are the overlaps between ladder.

SILICON SENSITIVE RADIATION LENGTH

Depth vs phi [PLAC]

- For 1 layer of active silicon, the expected radiation length is 0.0677% (see slide 40).
- then for 2 ladders (inner and outer), the radiation length should be : 0.1354\%

3.1 SW MODEL OF THE PST

3.2 SW MODEL OF THE PIT

Example of implementation

Length $(Z)=6 \mathrm{~mm}$
Outer $=259 \mathrm{~mm}$
Inner $=239 \mathrm{~mm}$

Length $(Z)=25 \mathrm{~mm}$
Outer1 $=239 \mathrm{~mm}$
Inner1 $=237 \mathrm{~mm}$
Length $(Z)=1 \mathrm{~mm}$
Outer2 $=259 \mathrm{~mm}$
Inner2 $=239 \mathrm{~mm}$

LFBA : Left Flange Base part A

LFBB : Left Flange Base part B

LFBK : Left Flange BacKer

APTS : A Pipe

Example of Naming convention :

BEAM PIPE SUPPORT CONE

RFBA : Right Flange Base part A
RFBB : Right Flange Base part B
RFBK : Right Flange BacKer
ABPR : A Beam Pipe Ring
BPPC : Beam Pipe PolyCon
EBPP : End Beam Pipe Polycon

RBPP : Ring Beam Pipe Polycon

Example of Naming convention : MSC TRANSITION PLATE

MTPA : Msc Transition Plate part A
MTPB : Msc Transition Plate part B
MTPC : Msc Transition Plate part C
MTPD : Msc Transition Plate part D
MTPE : Msc Transition Plate part E

Overview of the MSC

Note : in this version, the inner radii of the IDSM (\uparrow) has been changed from the coded value in order to avoid overlap with the PIT.

GEANT Volumes : Hierarchy

- Volumes have to be organized by level in order for GEANT to find energy loss, impact point in each volumes/layers.
- The current status is :
- The IDSM includes the PIXEL and MSC.
\rightarrow Issue : the MSC has a larger Z extension than the IDSM.
- The beam pipe is at the same level of the IDSM.
- The IDSM does not include the beam pipe.
\rightarrow Issue 1 : the beam pipe has a larger extension in Z than the IDSM.
\rightarrow Issue 2 : the beam pipe is inside the PIXEL, therefore it should be placed INSIDE the PIXEL/IDSM.
- The MSC is placed with respect the center of the IDSM.
- It is then placed at the center of STAR.
- The pixel detector is not placed at the center of the IDSM because the active silicon are not symmetric along a ladder.
- there's a offset of the whole sector in order to have the center of the active silicon placed at $(0,0,0)$.

Radiation Length breakdown

 radlen vs. η

- Left : using StarBASE ; it does not include the beam pipe material.
- Right : using STARSIM ; it does include all material (beam pipe + PXL + FGT + IDSM) in \mid eta $\mid<3$
- There is more material (red histogram) for the PXL in eta $<0(\mathrm{Z}<0)$ because the silicon ladder is asymmetric with respect the ladder support.

SUMMARY

- PIXEL detector geometry has been implemented in AgML.
- It has the fine details inherent to the PIXEL/ CMOS sensor and then necessary for tracking evaluation.
- The support material of the PIXEL, as well as the new beam pipe (requirement) have also been implemented.
- Material, radiation length and dimensions look agree with the input source (SW, Brushwellman drawing).

Next steps

- Refine material budget for the MSC (slide 39)
- Remaining "big" parts of the MSC and some corrections :
shrouds

- Representation of ladder's cables (slide 38)
- Look at the GEANT tree for optimization.

CABLES ON A LADDER

Material for some parts of the MSC

From Joe Silber

IDS ENVELOPE/INTERFACE DRAWING

Radiation length vs η For IDSM, PIXEL, FGT

- Default parameters are:
- Ntrig $=4$
- $\mathrm{d} \phi=.2$
- $\mathrm{d} \eta=.1$
- $|\eta|<6$
- $|\phi|<1$ deg.

- Same with Ntrig =100
- Increasing the \# of triggers give a slightly better resolution

Explanation of the "radLen vs. Z/ETA" PROFILE

Real length of material crossed by the particle

Real length of material crossed by the particle

Check with the [SSD] volume

ALL "SSD" SSD LADDERS $\begin{array}{ll}\text { ACTIVE } & \text { RDO } \\ \text { SILICON }\end{array}$

Radiation length of the beam pipe (starbase)

PIXEL DETECTOR [PXMO volume] RADIATION LENGTH

- right: radiation length vs. azimuth.
- We observe double peaks (high radiation length) for tracks crossing the entire sector support
- Other small peaks are the overlaps between ladder.

