UPC-electrons in PIXEL

S. Margetis, J. Thomas, F. Videbaek, Y. Fisyak, J. Bouchet

- Full GEANT simulation with Starlight
 - Generation of UPC pairs using Starlight
 - Generation of full rapidity/eta (-6 to +6)
 - Full diamond coverage (σ_z =20cm here)
 - UPGR15 geometry CDR
 - Hit densities due to spirals included
 - Impact on DO efficiency estimated

Directory with codes/kumacs/plots/scripts/history here: /star/institutions/ksu/margetis/hft/starlight/run Kai Schweda 5/5/2005

	Inner radius: Outer radius: Magnetic field: p_T - cut-off: UPC X-section*: Visible X-section: Luminosity: Rate:	HFT 1.3 cm 5.0 cm 0.5 T 1.0 MeV/c 34 k barn 3.460 k barn 10^{27} cm- 2 s-1 3.46 x10 ⁶		
		UPC	F	ladronic Au + Au
Integration time:		4 ms	4	ms
Hit density, inner layer:		57 cm ⁻²	5	8 cm ⁻²
Hit density, outer layer:		6 cm ⁻²	1	4 cm ⁻²

*QED calculations: A.J. Baltz, nucl-th/0409044.

• For 4Kbarn (and L=80*10²⁶) Rate=32MHz and (for 0.2ms) gives PileUp=6.4*10³ Events

• For Starsim (~1 MeV E_{rm}^{γ} cut) and 10.6 Kbarn x-section PileUp= 17 Kevnts

Wed Apr 18 15:28:48 2012

detp geom upgr15

BEAM_1_Z 79 # Z of projectile
BEAM_1_A 197 # A of projectile
BEAM_2_Z 79 # Z of target
BEAM_2_A 197 # A of target
BEAM_GAMMA 108.4 # Gamma of the colliding ions
W_MAX 1.0 # Max value of w
W_MIN 0.001 # Min value of w, $\gamma + \gamma$ cm energy
RAP_MAX 6. # max y
$CUT_PT 0 \qquad \# Cut in pT? (0 no, 1 yes)$
CUT_ETA 1 # Cut in pseudorapidity? (0 no, 1 yes)
ETA_MIN -6. # Minimum pseudorapidity
ETA_MAX 6. # Maximum pseudorapidity
PROD_MODE 1 # gg or gP switch (1 2-photon)
PROD_PID 11 # Channel of interest e+ + e- pairs
BREAKUP_MODE 4 # Nuclear breakup 4=leave intact
INTERFERENCE 0 # Interference (0 off, 1 on)

gkine -9 0 gfile o [outfile]

gvertex 0.32 0.09 -0.1 gspread 0.055 0.02 **20.0**

- This spectrum is compatible with others (full rapidity). Very low pt region depends on cuts used.
- It also agrees with Theory one (a few slides up)
- There are some higher pt tails if one allows for nuclear breakup

Au+Au Luminosity (RHIC-II)	$80 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1}$		PIXEL-1	PIXEL-2
dn/dŋ (Central)	700		Inner Layer	Outer Layer
dn/dŋ (MinBias)	170	Radius	2.5 cm	7.0 cm
MinBias cross section	10 barns	Central collision hit density	17.8 cm^{-2}	2.3 cm^{-2}
MinBias collision rate (RHIC-II)	80 kHz	Integrated MinBias collisions (pileup)	23.5 cm^{-2}	5.2 cm^{-2}
Interaction diamond size, σ	15 cm	UPC electrons	(19.9 cm^{-2})	0.8 cm^{-2}
Integration time for Pixel Chips 200 usec		Totals	61.2 cm ²	8.3 cm ⁻²

Full simulations show a factor of 2 more hits in layer-1 and 5 in layer-2 If I use the same sigma=15 they will go up

Bottom line: Effect on D0 efficiency

Red= Using HFT-proposal numbers Blue= Using this results An Extreme Test - Set CUTELE and DCUTE to 10 KeV instead of 1 MeV

Tracks with: Zero Hits = 26 KOne Hit = 4.2 KTwo Hits = 1.9 K>2 Hits = 2.1 K

Total # of Hits = 19.1 K

10 KeV

Tracks with: Zero Hits = 26 K One Hit = 3.5 K Two Hits = 1.6 K >2 Hits = 3.1 K

Total # of Hits = 23.9 K

An Extreme Test - Set CUTELE and DCUTE to 10 KeV instead of 1 MeV

1 MeV

10 KeV

Summary

- We get many hits from spiraling
 - Out of 19.1 Khits (total), about 2097 Tr * (5.3<hits/Tr>-2) =6.9Khits
 - hard to estimate exactly or which layer but doable (will check)
- We get contributions from tracks with large z_{vertex} if y is right
- We estimate a higher UPC -electron background in both layers
 - factors 2 [5] higher than CDO in layer-1[2]
 - extreme scenarios do not affect density dramatically (upto 25% increase)
 - simulation shows a different radial dependence than CDO
- Impact on DO efficiency visible