Selected highlights from the STAR experiment at RHIC

Sonia Kabana SUBATECH, Nantes, France for the STAR Collaboration

o Introduction and experimental set up
o Strangeness and elliptic flow
o (Anti-)hypertriton
o Low energy scan
o Future plans for spectroscopy with STAR
o Conclusions and Outlook

Introduction

Heavy Ion collisions: exploring the QCD phases Formation of sQGP in central Au+Au collisions at sqrt(s)=200 GeV at RHIC Initial Bjorken energy density ~5 GeV/fm^3

Relativistic Heavy Ion Collider (RHIC)

Sonia Kabana

Excited QCD 2010

Animation M. Lisa

STAR Detector

STAR-TPC: <u>NIMA 499 (2003) 659</u> STAR-detector: <u>NIMA 499 (2003) 624</u>

Sonia Kabana

STAR Detector

Strangeness and elliptic flow

Strangeness Production versus N(part)

- Strange hadrons are enhanced relative to p+p
- Relative enhancement seems to be slightly lower than in SPS for baryons, similar for Anti-Xis and higher for antilambdas.
- Strangeness content "hierarchy"
- Production volume not proportional to N_{part}

Rich set of strange particle measurements at STAR.

STAR Collaboration, nucl-ex/0809.0823

M Munhoz, SQM2009

Excited QCD 2010

 $E = \frac{Yield_{(A+A)} / \langle N_{part} \rangle}{Yield_{(n+n)} / 2}$

Baryon to meson ratio

-Baryons are more abundantly produced than mesons at intermediate p_T in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

 $\neg p/\pi, \Lambda/K_s^o, \Omega/\Phi$

•This behavior can be qualitatively reproduced by models that assume the coalescence of partons

M Munhoz, SQM2009

R. J. Fries et al, Phys. Rev., C68:044902, 2003 *R. C. Hwa and C. B. Yang*, Phys. Rev., C67:034902, 2003 *V. Greco et al*, Phys. Rev. Lett., 90:202302,2003.

STAR Collaboration, J. Phys. G34, S933-936, 2007

Λ/K_s^0 ratio at 62.4 GeV versus pT, centrality and collision system

M Munhoz, SQM2009

- □ Same behavior of Λ/K_s^0 ratio observed for Au+Au and Cu+Cu at $\sqrt{s_{NN}} = 62.4$ GeV
- □ Greater Λ/K_s^0 ratio reached in central than in peripheral collisions.

Azimuthal Anisotropy: Elliptic Flow

11

Sonia Kabana

Elliptic Flow and Strangeness

J/Ψ, **D** ϕ , Ω, Ξ, Λ, K_S⁰

π**, Κ**, **ρ**

- Elliptic flow: reveal the early stage collision dynamics Good probe of the early medium

Look at particle type dependence (K_s^0, Λ, Ξ)

Low hadronic interaction (Ω , ϕ): probe partonic collectivity

Nr of quarks scaling of v_2 in Au+Au collisions

- Hydro approach reproduces mass ordering
- v₂ of strange hadrons shows baryon-meson difference.
 - v2/n_q scaling-> suggests coalescence/recombination scheme for hadronization of bulk partonic matter.
 - v2 build up at partonic level
 - Indications of a different behavior for higher p_T

Hydro: P. Huovinen and P. V. Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 163 (2006)

Sonia Kabana

Excited QCD 2010

13

AR

Nr of quarks scaling of v_2 in Cu+Cu collisions

Nr of Quarks scaling works with available data in Cu+Cu collisions.

G. Wang, QM2009

Elliptic Flow of Ω and ϕ

 $\sqrt{s_{NN}}$ = 200 GeV ¹⁹⁷Au+¹⁹⁷Au Collisions at RHIC

 $\square \Omega$ and ϕ : low hadronic interaction --> partonic flow

Sonia Kabana

Partial summary : flow, strangeness

- Elliptic flow seem to develop early at partonic level (v2/n_q scaling)
- Hydrodynamics seems applicable in bulk low pT (v2 vs pT)
- Ideal hydrodynamic limit not reached (v4/v2^2)
- Deviation from n_q scaling seen at high pT

 Quark coalescence/recombination dominant hadron production mechanism in heavy ion collisions at RHIC (v2/n_q scaling, baryon/meson ratios)

(Anti-)hypertriton discovery

Observation of (anti)hypertriton

Jin Hui Chen QM09 and HypX 2009, Zhangbu Xu, RHIC-AGS meeting june 2009.

Hypernuclei: ideal lab for YN and YY interaction

- Baryon-baryon interaction with strangeness sector
- Input for theory describing the nature of neutron stars

No anti-hypernuclei have ever been observed

Coalescence mechanism for production: depends on overlapping wave functions of Y+N at final stage

Anti-hypernuclei and hypernuclei ratios: sensitive to antimatter and matter profiles in HIC

– Extension of the nuclear chart into anti-matter with S^[1]

[1] W. Greiner, *Int. J. Mod. Phys. E 5 (1995) 1*

QM09 proceeding: arXiv:0907.4147

Sonia Kabana

Excited QCD 2010

STAR

Event display

Figure 1: "Beam's eye view" of a typical event in the STAR detector when a $\frac{3}{\Lambda}\overline{H}$ candidate is produced. STAR's main tracking device reconstructs charged particle trajectories in 3-D; in this 2-D projection, the apparent track density is extremely large. The thick red line shows the ${}^{3}\overline{H}e$ daughter while the blue line marks the π^{+} coming from the decay of the ${}^{3}_{\overline{\Lambda}}\overline{H}$ candidate (black dash line). Dashed lines represent extrapolated trajectories which are not observed directly in the detector.

Sonia Kabana

Excited QCD 2010

³He & anti-³He selection

Hypertriton inv. mass

Jin Hui Chen QM09 and HypX 2009, Zhangbu Xu, RHIC-AGS meeting june 2009.

Signal observed from the data (bin-by-bin counting): **157±30**;

Mass: 2.989±0.001±0.002 GeV; Width (fixed): 0.0025 GeV.

Projection on anti-hypertriton yield: =157*2168/5810= $59\pm11^{3}_{E}\overline{H}=^{3}_{E}H\times^{3}\overline{H}e/^{3}He$

Sonia Kabana

Excited QCD 2010

24

STAR

Antihypertriton inv. mass

Jin Hui Chen QM09 and HypX 2009, Zhangbu Xu, RHIC-AGS meeting june 2009.

 \star Signal observed from the data (bin-by-bin counting): 70±17;

Mass: 2.991±0.001±0.002 GeV; Width (fixed): 0.0025 GeV.

Sonia Kabana

Excited QCD 2010

Hypertriton+Antihypertriton inv. mass

Jin Hui Chen QM09 and HypX 2009, Zhangbu Xu, RHIC-AGS meeting june 2009.

★ Combined hyperT and anti-hyperT signal : 225±35;

It provides a $>6\sigma$ significance for discovery.

Sonia Kabana

Measurement of the lifetime

Production rate

Jin Hui Chen QM09 and HypX 2009, Zhangbu Xu, RHIC-AGS meeting june 2009.

TABLE I: Particle ratios from Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV/c. The ³He (³He) yield have been corrected for $^{3}_{\Lambda}$ H $\begin{pmatrix} 3\\ \overline{A}\overline{H} \end{pmatrix}$ feed-down contribution.

	Particle type	Ratio
	$^3_{\bar\Lambda}\bar{H}/^3_{\Lambda}H$	$0.49\pm0.18~(\text{stat.})\pm0.07~(\text{sys.})$
	$^{3}\bar{\mathrm{He}}/^{3}\mathrm{He}$	$0.45\pm0.02~(\text{stat.})\pm0.04~(\text{sys.})$
	$^3_{\bar{\Lambda}}\bar{H}/^3\bar{He}$	$0.89 \pm 0.28~{\rm (stat.)} \pm 0.13~{\rm (sys.)}$
	$^3_{\Lambda}{\rm H}/^3{\rm He}$	$0.82 \pm 0.16~{\rm (stat.)} \pm 0.12~{\rm (sys.)}$
Coalescence => $\frac{3}{\Lambda} \overline{H} / \frac{3}{\Lambda} H \propto (\overline{p} / p)(\overline{n} / n)(\overline{\Lambda} / \Lambda)$ $\frac{3}{4} \overline{H} / \frac{3}{\Lambda} H \approx (\overline{p} / p)(\overline{n} / n)(\overline{\Lambda} / \Lambda)$		
		He/ He \propto (p/p) (n/n)
		0.45 ~ 0.77*0.77*0.77
Antiparticle/particle ratios favor coalescence		
		STAP

Summary: (anti)-hypertriton

Jin Hui Chen QM09 and HypX 2009, Zhangbu Xu, RHIC-AGS meeting june 2009.

Antihypertriton has been observed for first time; 70 candidates, with significance $\sim 4\sigma$.

Consistency check has been done on hypertriton analysis; 157 candidates, with significance better than 5σ .

- The measured lifetime is $\tau = 182 \pm_{45}^{89} \pm 27$ ps, consistent with free Λ lifetime (263 ps) within uncertainty.
- ★ The antihypertriton/hypertriton ratio is measured to be 0.49±0.18±0.07, and anti-³He / ³He is 0.45±0.02 ±0.04, favoring coalescence.

Outlook - anti-(hyper)-nuclei

Lifetime:

-data samples with larger statistics (~factor 10 more within a few years)

 ${}^{3}_{\Lambda}H \rightarrow d+p+\pi$ channel measurement: *d*-identification via ToF.

Search for other hypernucleus: ${}^{4}_{\Lambda}H$, ${}^{4}_{\Lambda}He$, ${}^{4}_{\Lambda\Lambda}H$, ${}^{3}_{\Xi}H$,

Search for anti- α

AGS-E906, Phys. Rev. Lett. 87, 132504 (2001)

RHIC: best antimatter machine ever built

Future plans for spectroscopy with STAR atRHICJ. H. Lee, Hadron 2009

Search for glueball production in Double Pomeron Exchange processes

- Roman Pots (used for pp2pp exp. at RHIC) for forward proton tagging
- rapidity gap > 4 units for M_X < 3 GeV
- polarized p+p collisions

 Central production for searching for glueballs in Double Pomeron Exchange (DPE) processes

p1 p2 -> p1' M_X p'2

M_X centrally produced

Search for gb candidates in M_X

M_X (1-3 GeV) --> pi+pi-, pi+pi-pi+pi-, K+K-

Acceptance for decay pions

acceptance for decay pions from M-X -> pi+pi-pi+pi-

J. H. Lee, Hadron 2009

Sonia Kabana

Low energy scan

Low energy scan happening this year !

Key idea: study Phase Diagram throughout energy scan region

Sonia Kabana

Energy scan: 9.2 GeV

4 hours and 40 minutes in year 2008:~3000 good events

 $(good \equiv primary vertex along beam and within acceptance)$

WA97

• WA98

NA44

O PHENIX

Unambiguous beam+beam events

10 8 ^{out} [fm] 9

Publishable quality data show particle ratios, ν_2 and HBT results are comparable to SPS results at a similar energy.

Summary

 Elliptic flow, B/M ratios, strangeness suggest --> Parton coalescence as dominant mechanism for hadron production

- First observation ever of anti-hypertriton in Au+Au collisions at sqrt(s)=200 GeV. Data suggest production through coalescence.
- RHIC: best antimatter machine ever built
- \bullet Low $\mu_b,$ high number and energy density of partons at top RHIC energy -->
- RHIC: a unique source of exotics ?

Extension of the chart of the nuclides into anti-matter with Strangeness sector

