

The CBM sensor digitizer

C.Dritsa IKF-Frankfurt, IPHC-Strasbourg (now at JLU Giessen)

Outline

Motivation Model requirements Description of the model Important definitions (1) charge generation charge sharing Evaluation Important definitions (2) Comparison with experimental data Outlook

Motivation

Digitizer model developed in order to allow simulating the CBM-MVD.

In collaboration with the IPHC-PICSEL group in Strasbourg and the IKF-MVD group in Frankfurt.

It was inspired by a detector response model developed for the ILC vertex tracker

 M. Battaglia, "Response simulation of CMOS pixel sensors for the ILC vertex tracker", Nuclear Instruments and Methods in Physics Research A 572 (2007) 274–276

CBM-MVD response model requirements

- Realistic simulations allowing to simulate:
 - Cluster properties: size, shape
 - pixel size
 - vary number of ADC channels of the readout
 - particles impinging with high incident angles
 - noise, fake hits
- Rapid simulation features
 - simulate collision pile up
 - delta electrons (of concern in CBM)
 - fast, allowing high statistics simulations

Spirit of the model

Challenge:

 Charge carrier transport process too complex and slow for simulation

Solution:

- Parameterization of the sensor response
- Use experimental data
- GEANT provides only entry and exit coordinates of the particle in the volume
 no dE/dx from GEANT

Reference data

Data acquired at CERN/SPS with pions 120 GeV/c

Sensor under test: MIMOSA17

- AMS 0.35
- standard low resistivity epitaxial layer
- analogue output (12 bit charge resolution)
- 30 µm pixel pitch

Particle incident angles 0-75 degrees (90 degrees is parallel to the sensor plane)

C.Dritsa, St.Odile, 08 September 2011

Important definitions (1)

pixel index

Lorentz

Other features

Simulated by random sampling of a distribution following a Gauss law with adjustable μ , σ mean=0 $\sigma = 15$ electrons Number of ADC bits adjustable 12 bits Pixel pitch adjustable 30 µm

The model: Input

The charge of the cluster is taken by random sampling of the experimental distribution for 25 pixels

0 degrees incident angle

among the pixels in the cluster is based on a 2D Lorentz distribution (derived from the 1D)

0 degrees incident angle

The model: charge generation

$$Q_{incl} = Q_0 \times \frac{l_{incl}}{l_0} \qquad \blacksquare Q_0, I_0 : known$$
$$\blacksquare I_{incl}: provided by GEANT$$

The model: charge distribution

Illustration for inclined track

- Charge provided by Landau (25 pixels)
- The trajectory is divided in segments
- A Lorentz function corresponds to each segment

The model

Evaluation

C.Dritsa, St.Odile, 08 September 2011

Important definitions (2)

Q1>Q2>Q3...

Accumulated charge plot

The accumulated charge plot describes the charge sharing among the pixels of the cluster:

e.g. the seed pixel collects ~30% of the total cluster charge.

C.Dritsa, St.Odile, 08 September 2011

Evaluation: MPV of Landau

Evaluation: sigma of Landau

Evaluation

Average number of pixels/cluster

Evaluation: shape

Summary and outlook

Digitizer model developed for the CBM-MVD and successfully tested with experimental data.

- Model was successfully tested on High-Resistivity sensors (M.Domachowski)
- Successfully tested on neutron irradiated sensors (M.Domachowski)
- Simulation of MIMOSA-26 data sparcification in process (Q.Li)

Acknowledgments

Thanks to: the IPHC-PICSEL group and the IKF-MVD group.

In particular: <u>IPHC:</u> J.Baudot, M.Goffe, R.DeMasi, M.Winter <u>IKF:</u> M.Deveaux, M.Domachowski, Q.Li, J.Stroth

C.Dritsa, St.Odile, 08 September 2011

High-Res MAPS: Measurement vs. simulation

Simulation of irradiated MAPS in CBM-Root

Melissa Domachowski - CBM Collaboration Meeting, Dresden 2011

Particle yields

