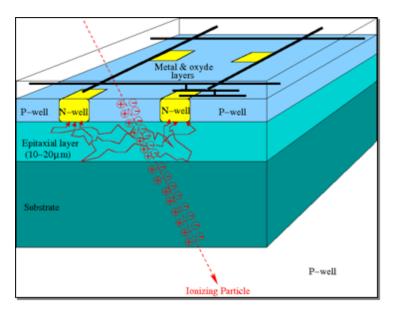
DIGMAPS: a standalone tool to study digitization

A.Besson, IPHC-Strasbourg

thanks to A.Geromitsos and J.Baudot for fruitful discussions


Why a digitizer tool for MAPS ?

• 2 mains motivations

- Help to optimize design for a given application, e.g.
 - ➤ N bits of ADCs, Discriminator thresholds,
 - > occupancy, hit separation,
 - ➢ Pitch, number of layers, etc.
 - ≻ Etc.
- Test model for simulation
 - Fast or full simulation for many applications
- 1 long term goal
 - Get a full simulation chain
 - Geant 4 + digitizer + tracking/reco
 - Alignment studies (e.g. AIDA)
- 1 road map
 - Build a data driven model
 - ➤ to take advantage of our knowledge coming from ~30 beam test campaigns
 - Because a pure realistic analytical model is difficult to build

What do we want to simulate ?

- Step 1: incident particle generation
 - Nature, energy spectrum, incident angle spectrum
 - Beam test, beamstrahlung spectrum for ILC, etc.
- Step 2: energy deposition ⇒ charge generation
 - Landau law (MPV = 80 e- / um)
- Step 3: charge transport up to the N-well diodes
 - Charge sharing between pixels
 - Recombination, charge collection efficiency
 - Reflexion at the epi/substrate interface
 - Noise, fake pixels
- Step 4: digital part
 - Discriminator / ADC dynamic range
 - Zero suppression stage
- Step 5: clustering algorithms
 - Resolution, hit separation
- Step 6: (not included) tracking, vertexing etc.

- Test Criteria:
 - Realistic performances
 - Efficiency,
 - ➤ resolution,
 - ➤ fake rate
 - Charge sharing
 - > occupancy (multiplicity)
 - Hit separation

DIGMAPS: a standalone digitizer tool

- MAPS Digitizer (DIGMAPS)
 - From particle generation
 - To the digitizer
- Library running in root
 - Easy to load
 - Easy to run

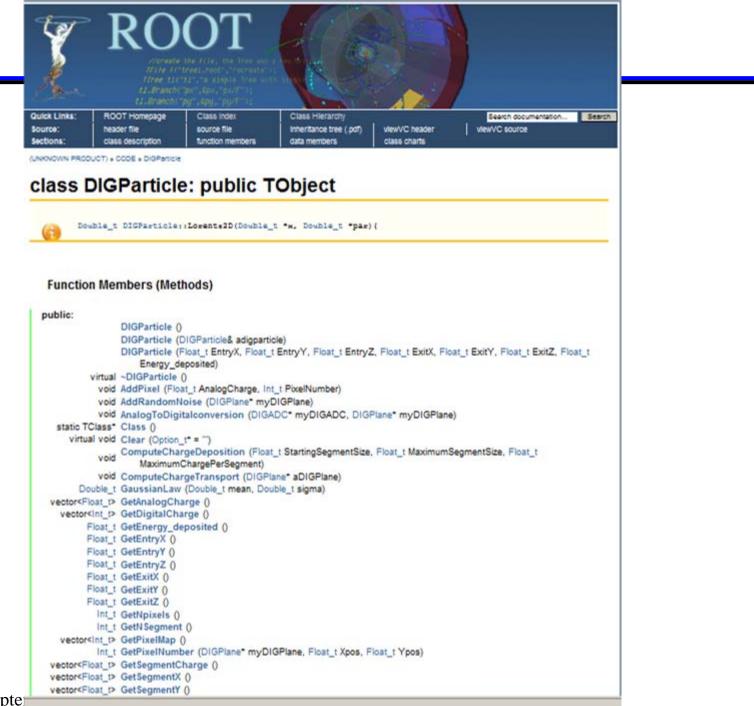
```
gROOT->ProcessLine(".L digaction.cxx+");
gROOT->ProcessLine(".L digadc.cxx+");
gROOT->ProcessLine(".L digbeam.cxx+");
gROOT->ProcessLine(".L digplane.cxx+");
gROOT->ProcessLine(".L digparticle.cxx+");
gROOT->ProcessLine(".L digreadoutmap.cxx+");
gROOT->ProcessLine(".L digcluster.cxx+");
gROOT->ProcessLine(".L digcluster.cxx+");
gROOT->ProcessLine(".L diginitialize.cxx+");
gROOT->ProcessLine(".L diginitialize.cxx+");
gROOT->ProcessLine(".L dignaps.cxx+");
gROOT->ProcessLine(".L digmaps.cxx+");
gROOT->ProcessLine(".L digmaps.cxx+");
```

DIGMAPS myDIGMAPS("name","title", "~/mydircode/","input.txt","~/myoutputdir","output.txt","foresee")

All output stored in Root format

➤ .x Read.C ; .x Plot.C

```
Int_t myconfig = 1;
myDIGMAPS2.PrintConfigurations() ;
myDIGMAPS2.PlotAConfiguration(myconfig,1);
```


Input data cards to compare any configurations

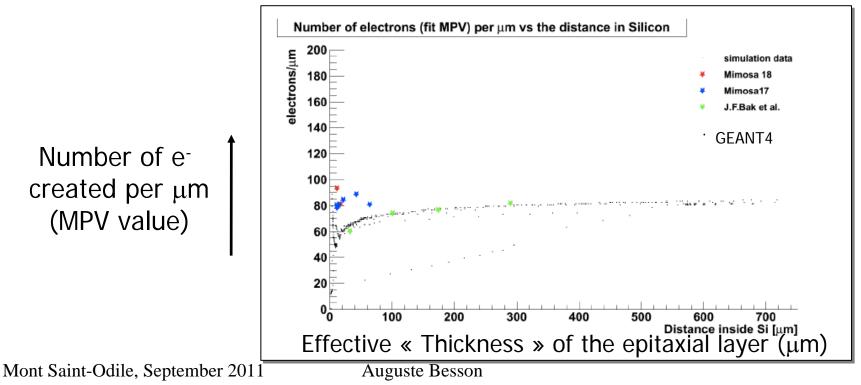
/// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	++-+-+-+-				
// // This is a Configuration File for Silicon Tracking Analysis DIGMAF	PS Package				
// // created -> 18/03/2011	//CHARGE TRANSPORT MODEL				
// Author = Auguste Besson abesson@in2p3.fr	//basic model				
// -+-+-+-+-+-+++++++++++++++++++++++++	//sigma of the gaussian width dispersion of charge at 10 microns depth BasicModel_SigmaTenMicrons: 10.0				
	//Chose_Model (1=Lorentz2D , 2=Gauss2D)				
//	ChargeModel: 2 //Lorentz2D model				
// Action Parameter // -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	//C term of the Lorentz width dispersion				
// chose the action -> foresee = model result : train = adjust/fit	Lorentz2DModel_Cp0: 0.6607				
// plot = fill histograms from the tree. //Doit "foresee"	Lorentz2DModel_Cp1: 0.40 //0.400664 Lorentz2DM <u>odel_RangeLimit_InPitc</u> hUnit: 2.5				
Model: "basic"	//Gauss2D Model				
// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	//sum of 2d gaussian The sigma are lineary dependant to the pitch Gauss2DModel_sigma1_Cp0: 1.12				
// BEAM Parameter	Gauss2DModel_sigma1_Cp1: 0.35				
// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	Gauss2DModel_sigma2_Cp0: 1.16				
RunNumber: 1000 Number ofEvents : 10000	Gauss2DModel_sigma2_cp1: 0.83 Gauss2DModel_weight: 0.34				
H Beam generation option.	// -+-+-+-+-+-+-+-+-+-+++++++++++++++++				
//1=realistic beam with random number of particle per event //2 ≥1 particle per event with a hit in a central pixe]	// ADC Parameters				
BeamOption: 2	// number of different ADC to test				
//number of particles per mm^2 on the Plane per event (Lambda facte ParticleDensity: 5.0	NADC: 3 // ADC parameters				
//ParticleDensityWidth 0.5	\times Nhits - number of hits of the ADC There will be (2ANhits - 1) thresholds				
// incident angle in degrees in cylindrical coordinates (theta and MAngles: 3	<pre>// LSB, Electron_Conversion and ADC_thresholds are in Noise multiple units (e.g. 2.0 = 2.0</pre>				
ThetaIncidentDeg 0.0 10.0 20.0	// There are 2 different ways to set the ADC // EITHER				
PhilacidentDeg 0.0 0.0 45.0	<pre>// 1/ ADC_linear = 1 (the response is linear, so setting the LSB and</pre>				
// -+-+-+-+	<pre>// the Electron Conversion factor allow to compute all thresholds. // = thresholds will be = LSB, LSB+1xElectron_conversion, LSB+2xElectron_conversion etc.</pre>				
// -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	// LSB= 1.5 = threshold of the first significant bit				
//pixel p <u>itch in X and Y in mic</u> rons	// Electron_Conversion= 1.5 // ADC_thresholds= -				
NGeom: 4 PitehX: 10.00 20.00 30.00 40.00	// OR OR				
P/tchY: 10.00 20.00 30.00 40.00	// LSB= -				
//Noise in electrons NoiseElectrons: 10.85 9.20 9.40 9.80	<pre>// Electron_Conversion= - // ADC_thresholds= 2.0 4.0 5.0 etc.</pre>				
//epitaxial thickness in microns	//ADC 1				
EpitaxialThickness: 12.65 10.80	Nbits: 1 ADC_linear: 0				
//number of pixels	LSB: -				
NpixelsX: 21	Electron_Conversion: - ADC_thresholds: 5.0				
NpixelsY: 21	//ADC 2				
//Chip temperature NTemperature: 1	Nbits: 12 ADC_linear: 1				
Temperature: 10					
//CHARGE TRANSPORT //ionization energy (eV)					
IonizationEnergy: 3.6	$\blacktriangleright Beam (flux, angle)$				
//Starting Segment size (in microns) SegmentSize: 0.1	$ADC_{linear: 1}$ \square				
//Maximum Segment size (in microns)	LSB: 0.60 / IVIAF 3 (PILCH, HOISE, EPI. Layer)				
MaximumSegmentSize: 1.0 //Maximum Charge Per Segment (in electrons)	ADC_thresholds: - Charge transport Model				
MaximumChargePerSegment: 1.0					
//Diffusion Maximum Range in X and Y (in pitch units) DiffusionMaximumRangeInX: 2.5	➢ADC/discri threshold				
DiffusionMaximumRangeInY: 2.5					
//Reflexion Coefficient on the subtrat-epi border (1.0 means 10 ReflexionCoefficient: 1.0	0%) NOT USED >Etc.				
	(under developpment)				
	(under developpment)				

Mont Saint-Odile, September 2011

DIGMAPS: Root-Html doc

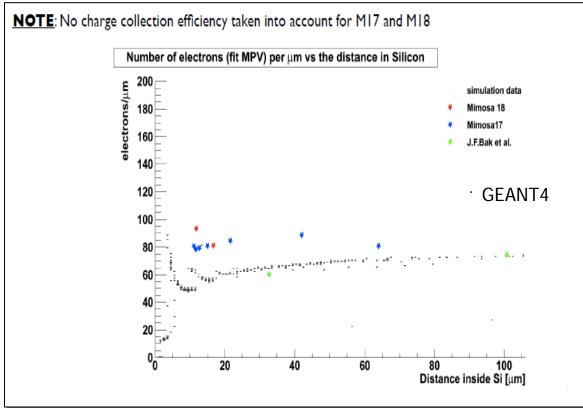
KNOWN PRODUC	ROOT Homepage	Class Index	Class Hierard	ny	Sean	ch documentation
NOVIN PRODUC						
lass In	dex					
Modules CODE						
Jump to D DIGAc DIGM DIG	digb digc i Gp digpi digr	DIGE DIGH DIGI	DIGInitialize:	DIGInitialize::Ac	DIGInitialize::B	DIGInitialize::P
DIGADC						
DIGADC						
DIGAction						
DIGCluster						
DIGEvent						
DIGHistogra	ms					
DIGInitialize						
	:::ADCParameter_t					
	ActionParameter					
	::BeamParameter					
DIGInitialize	::PlaneParameter	t				
DIGMAPS						
DIGParticle						
DIGPlane						
DIGReadout	map					

Mont Saint-Odile, Septe

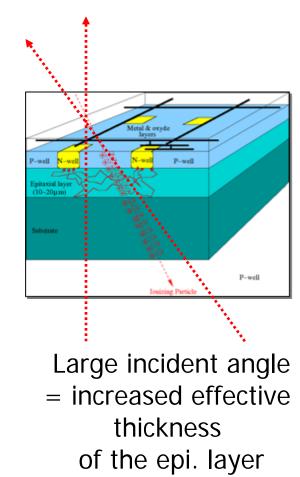

DIGMAPS: Root-Html doc

```
11
180
   11
181
   void DIGParticle::ComputeChargeDeposition(Float_t StartingSegmentSize, Float_t MaximumSegmentSize,
182
                                                Float t MaximumChargePerSegment)
183
184
    Ł
      Float t SegmentSize = StartingSegmentSize;
185
      Float t TotalLength = TMath::Sqrt((fExitX-fEntryX)*(fExitX-fEntryX))
186
187
                                         +(fExitY-fEntryY)*(fExitY-fEntryY)
188
                                         +(fExit2-fEntry2)*(fExit2-fEntry2));
189
190
      Float t ChargePerSegment = 0.0;
      if(SegmentSize<0.0){
191
        SegmentSize=0.001;
192
193
      3
194
      fNSegment = int(TotalLength*1.000001/SegmentSize) ;
      if(fNSegment<1){
195
196
        fNSegment=1;
197
      SegmentSize = TotalLength/float(fNSegment);
198
199
      ChargePerSegment = fEnergy deposited / float(fNSegment);
200
      while((SegmentSize>MaximumSegmentSize) 66 (ChargePerSegment > MaximumChargePerSegment)){
201
        Int_t newNSegment = int(fNSegment *1.1);
202
        if (newNSegment==fNSegment) {fNSegment++;}
203
        SegmentSize = TotalLength/float(fNSegment);
204
        ChargePerSegment = fEnergy deposited / float(fNSegment);
205
206
      Float t xstep = fExitX-fEntryX;
207
208
      Float t ystep = fExitY-fEntryY;
      Float t zstep = fExit2-fEntry2;
209
210
211
212
      for (Int t i=0 ; i<fNSegment ; i++) {</pre>
        fSegmentX.push back(fEntryX + (float(i+0.5)* xstep/float(fNSegment)) );
213
        fSegmentY.push_back(fEntryY + (float(i+0.5)* ystep/float(fNSegment)) );
214
        fSegmentZ.push_back(fEntryZ + (float(i+0.5)* zstep/float(fNSegment)) );
215
        fSegmentCharge.push back(ChargePerSegment);
216
217
218
219
220
221
    11
222
   11
```

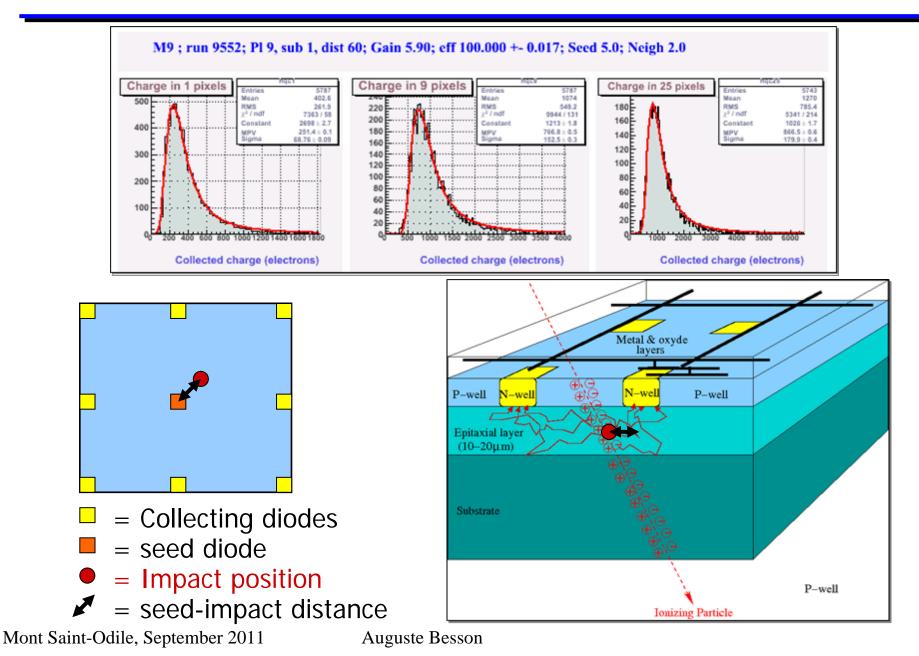
Step 2: Energy deposition


- Potential tricky issues:
 - What about charge created inside the diode ?
 - Is the Epitaxial layer thickness really known ?
 - Is GEANT4 able to compute energy deposition in very thin material (10-20 um) ?

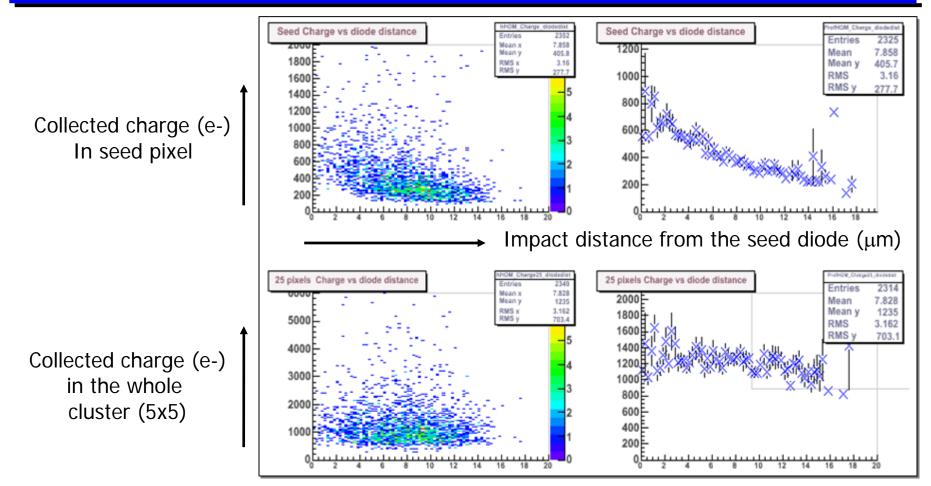
Energy deposition in thin silicon devices (A.Geromitsos)


Step 2: Energy deposition in thin silicon devices (A.Geromitsos)

- (large values obtained with large incident angle)
 - GEANT4 underestimate charge creation for thin devices
 - Charge creation taken from test beam data

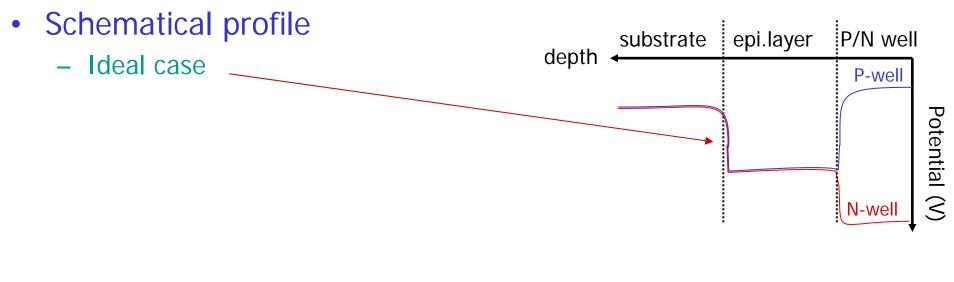


\Rightarrow Chose a Landau with a MPV=80 e-/µm

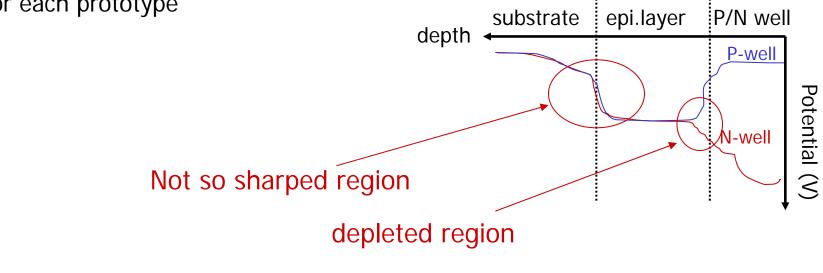

Mont Saint-Odile, September 2011

Seed impact distance and charge collection

Charge vs seed-impact distance

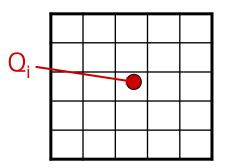

- Charge in seed depends highly on impact position but total charge is « almost » constant
 - Global Charge collection efficiency is constant as a first good approximation
 - We can separate charge creation and charge collection in 2 independent steps.
 - Charge creation can be parametrized with on only one parameter = Effective epitaxial thickness for a given prototype

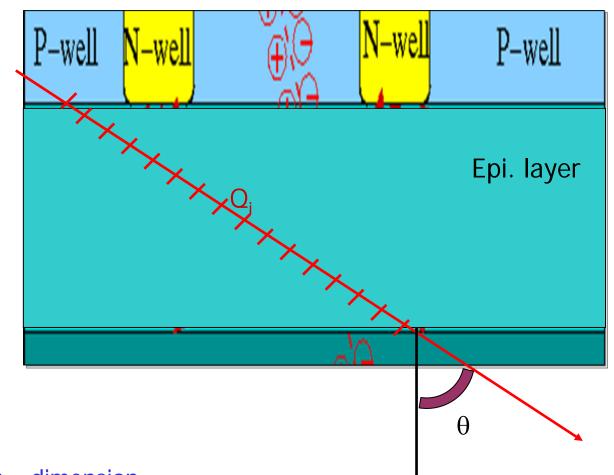
Mont Saint-Odile, September 2011


Step 3: Charge transport and charge collection

Goal Build a data driven model with a reasonable number of parameters Physical parameters: Collecting charge diode (N-Well) > pitch > Surface Depleted region Doping profile Not always known perfectly Epitaxial layer thickness (e.g. doping profile) Epitaxial layer – Substrate interface Perfect reflexion of charge ? Charge Collection Efficiency Is it constant? From our data - Total collected charge (e-) Charge distribution between pixels Measurable from Noise (e⁻) lab and beam test Charge collection efficiency (>~90-95%) (easier with analog ouput !) Effective epitaxial thickness ADC gain and dynamic range

Step 3: Potential profile


Measure an effective epitaxial layer
For each prototype



Mont Saint-Odile, September 2011

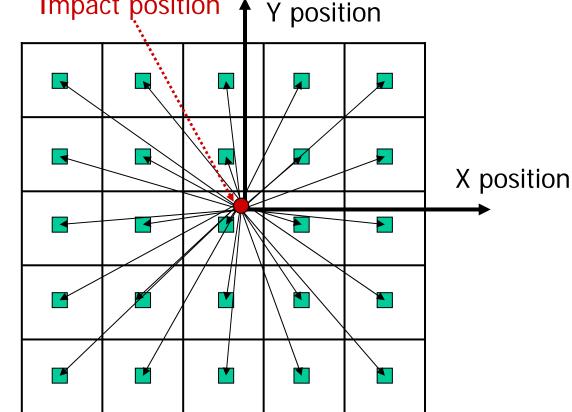
Step 3: segmentisation

- Divide the track
 - N segments i
 - $Q_i = Qtot /N$
- Q_i can be as low as 1 e-
 - More CPU
 - More detailed
 - Option assumed in the following slides
- compute 25 probabilities of Charge Qi to reach pixel j(1,25)

- Model independant of « z » dimension
 - But able to deal with tracks having $\theta \neq 0$

Ζ

Step 3: What we konw/observe from our data

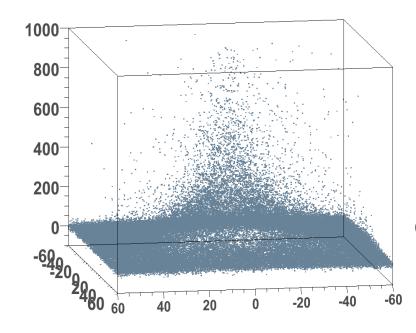

- Results taken from Mimosa 9/18 chips
 - (AMS-opto 0.35, not HR)
 - Analog output (actually 12bits ADC)
 - 10,20,30,40 um pitch
- Informations provided by beam test/lab test
 - Gain (e-/ADC)
 - Charge collection efficiency
 - Effective epitaxial layer thickness
 - Obtained from cluster total charge
 - Performances
 - > S/N, efficiency, fake rate, resolution, multiplicity, etc.
- Chips with digital output (STAR, CBM, ILC 1st layer, etc.)
 - No charge recorded
 - Threshold scans

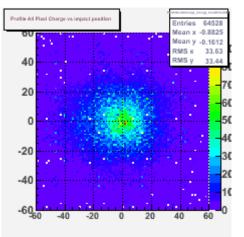
Collected charge vs impact position

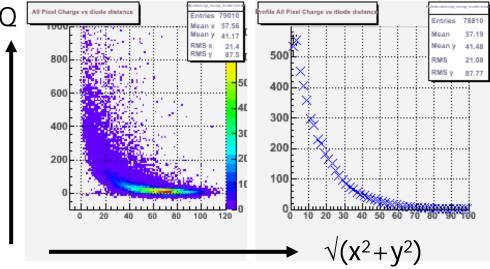
Impact position

- For each event
 - Impact position from the telescope defines the origin
 - Store 25 x 3D vectors
 - \succ {x(µm), y(µm), Q(e⁻)}

Plot all this vectors in a Single 3D plot

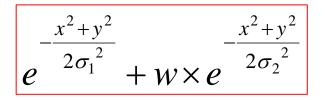


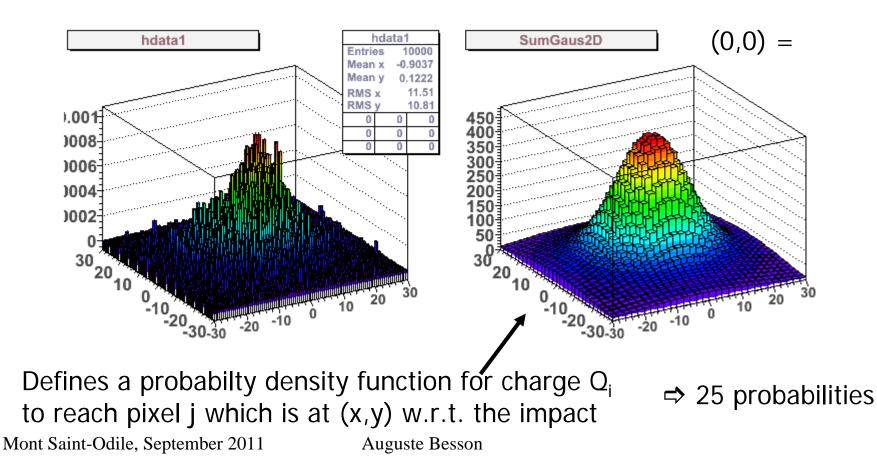

- All the useful information should be contained in this plot
 - Use it as a probability density function

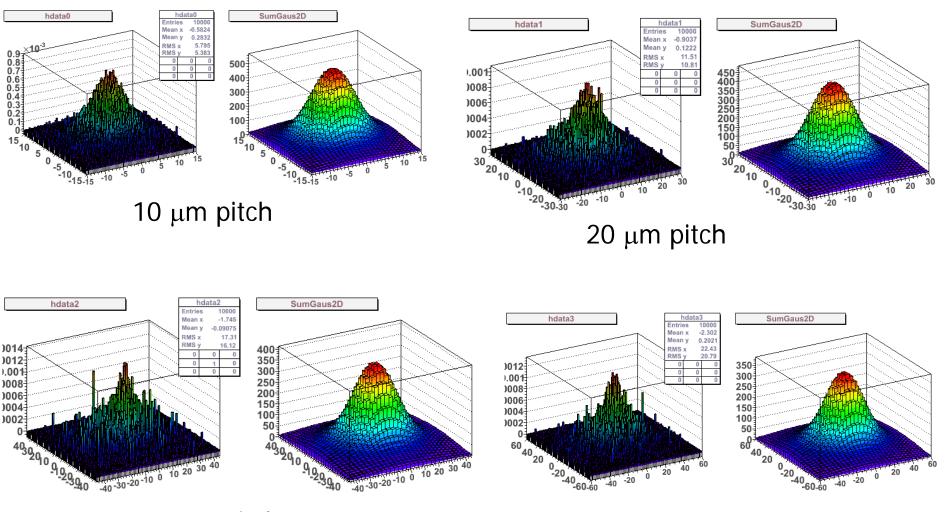

Collected charge vs impact position (2)

• Example (30 um pitch)

All Pixel Charge vs impact position

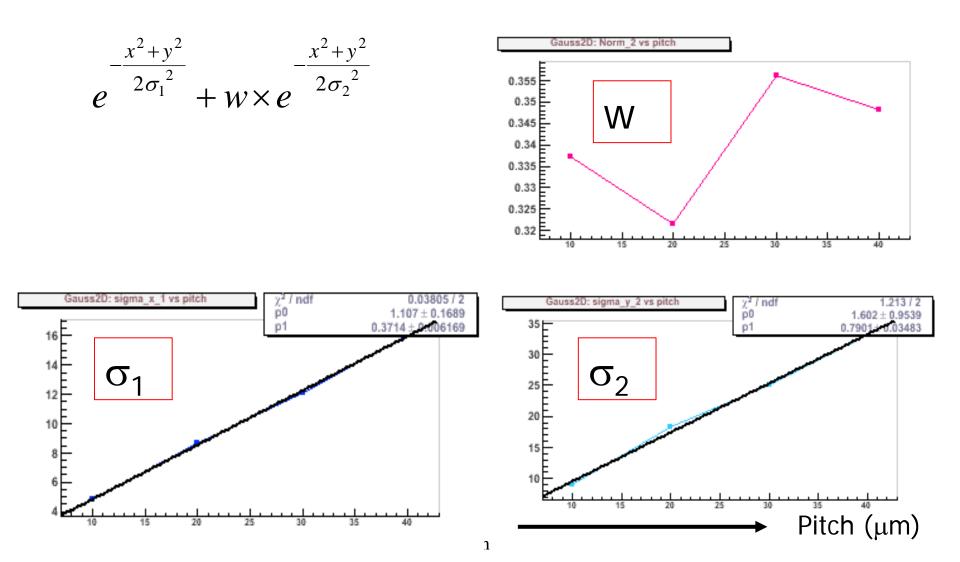





Collected charge vs impact position (4)

- Take the profile of the previous plots and fit it with
 - F(x,y) = sum of 2 x 2Dgaussian

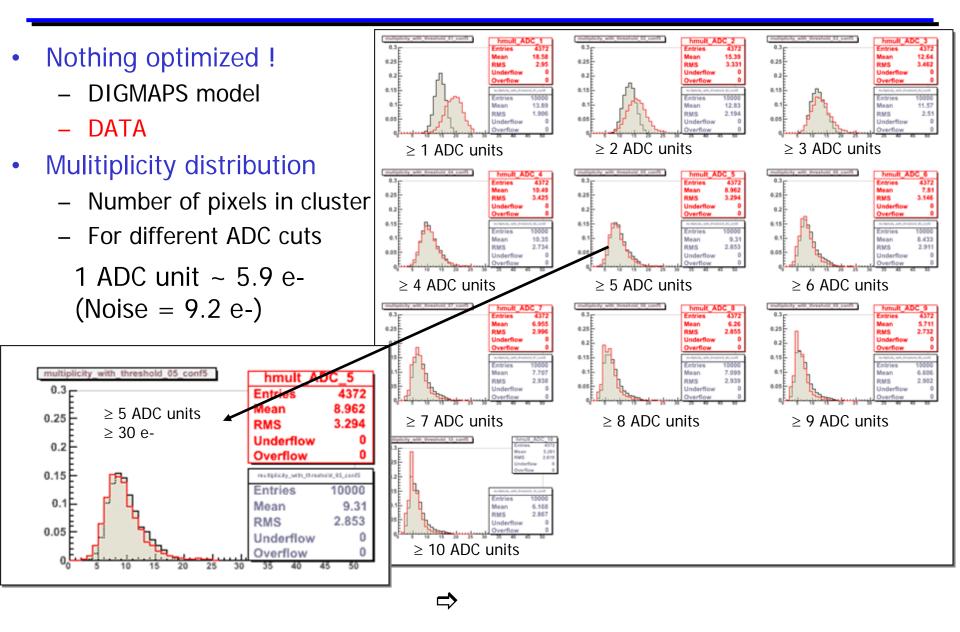
Collected charge vs impact position (3)

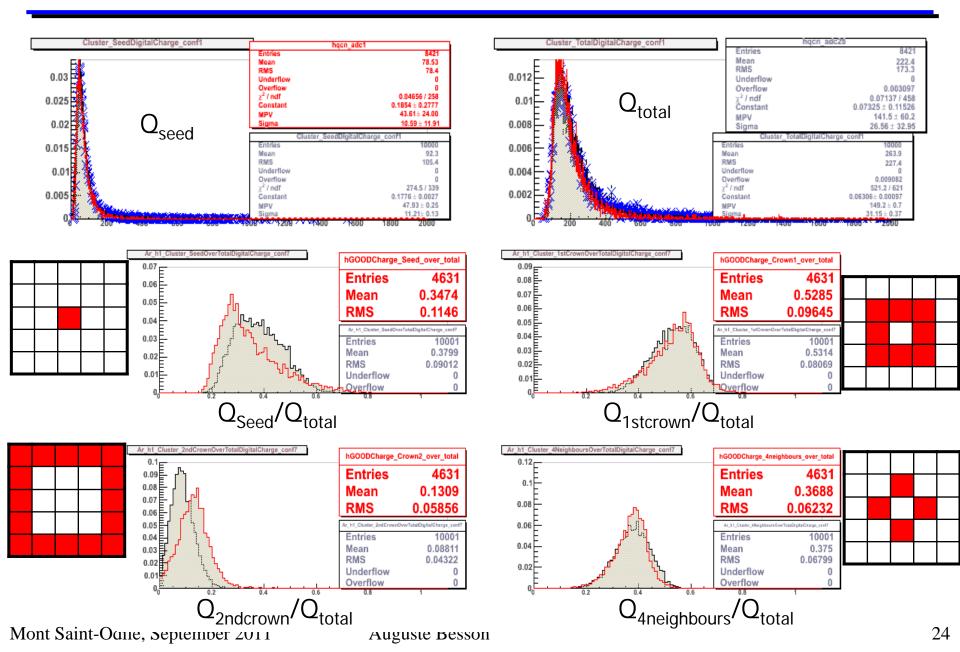


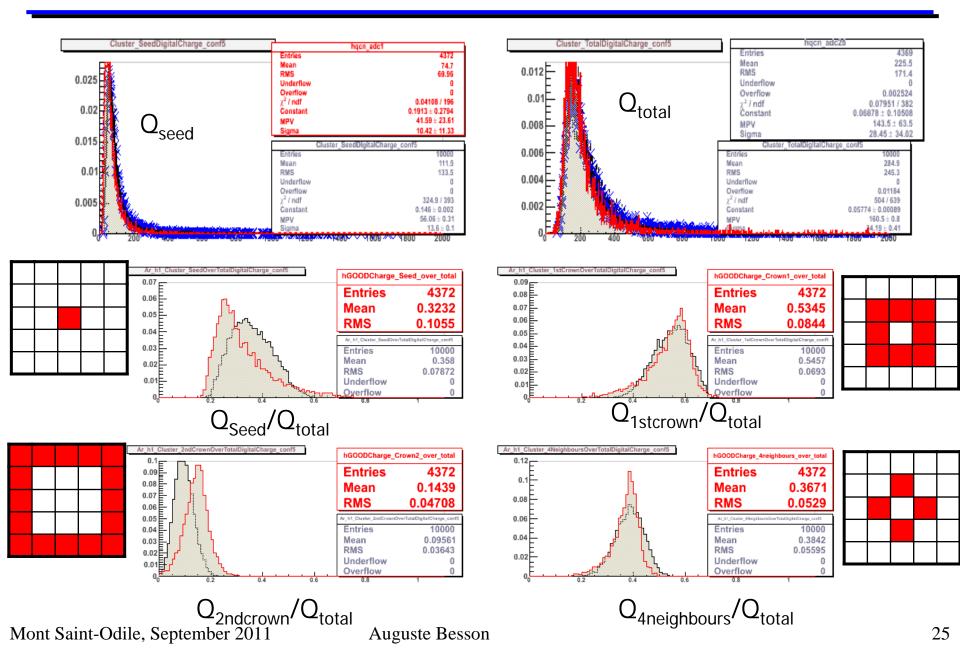
 $30 \ \mu m$ pitch

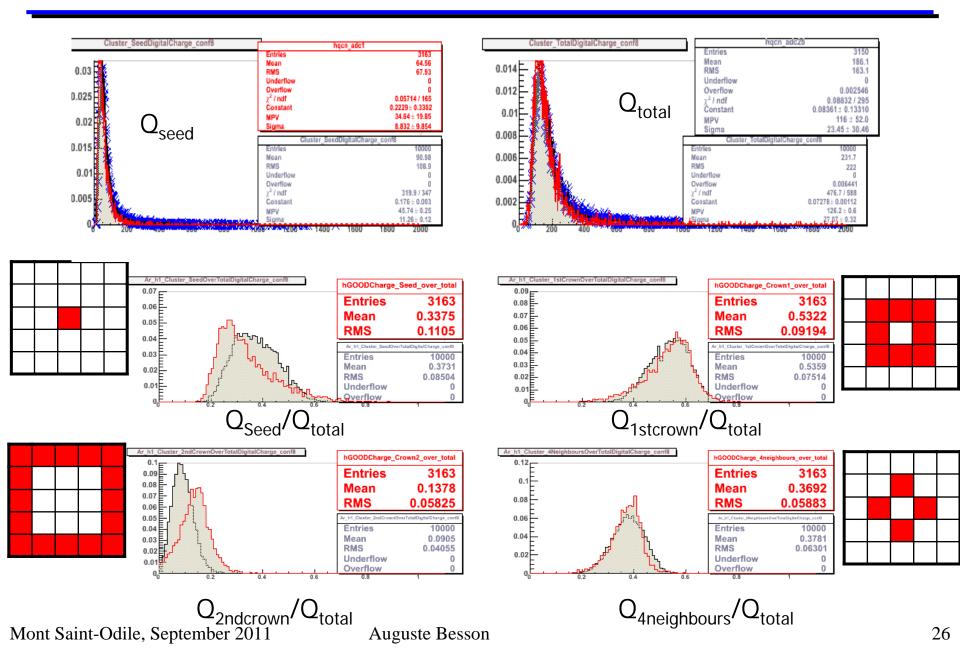
 $40 \ \mu m$ pitch

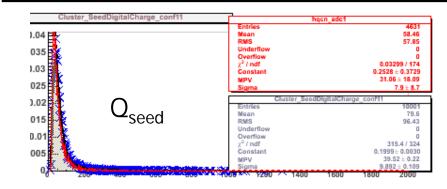
Collected charge vs impact position (5)

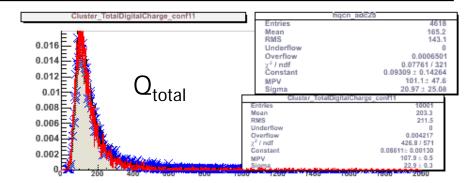

• Linearity vs pitch ⇒ 5 parameters for all pitches

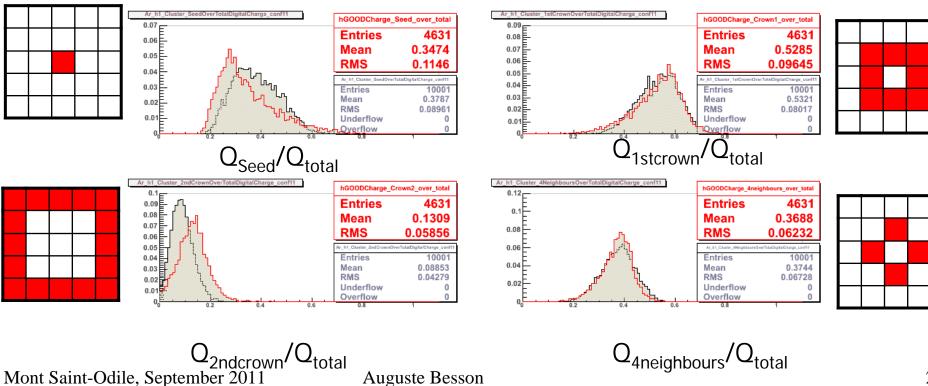

Are results close to real data?


DIGMAPS: Some preliminary results (20 um pitch)

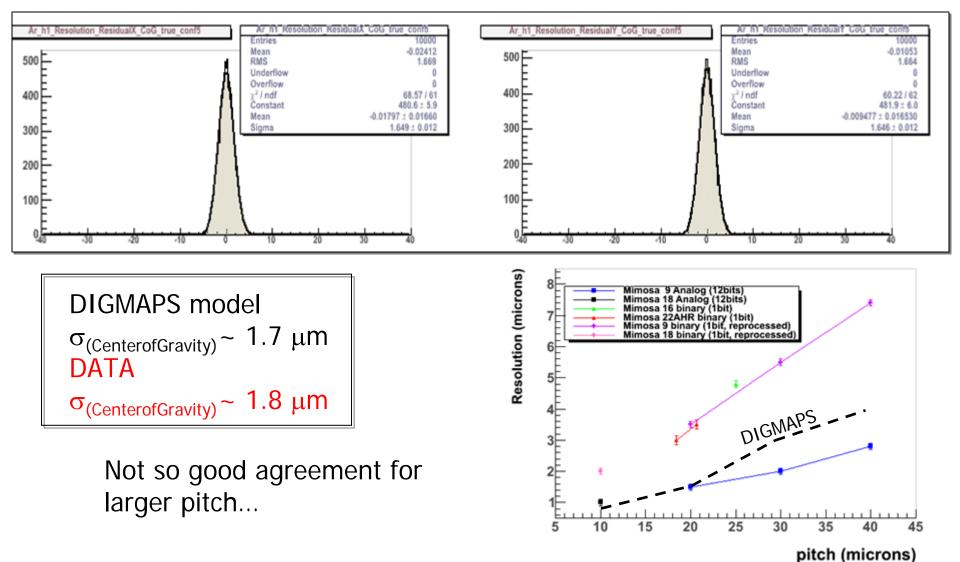

M18 (10µm pitch)


M9 (20µm pitch)

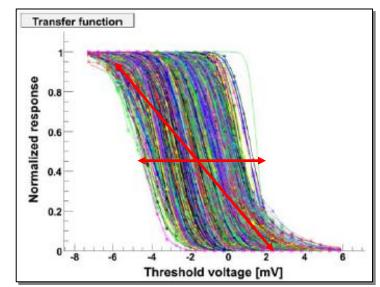



M9 (30µm pitch)

M9 (40µm pitch)



Resolution (µm)


• E.g. M9, 20 um pitch

Mont Saint-Odile, September 2011

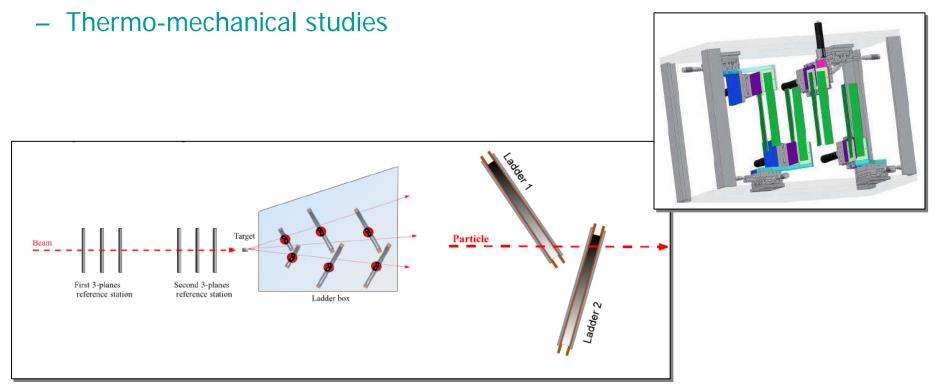
Step 4/5 (ADC and cluster algorithms)

- Under development
 - Only perfect clustering at the moment
 - Only perfect ADC/discri.
 - Realistic Noise treatment to be added FPN + Temporal Noise
 - Zero suppression to be added

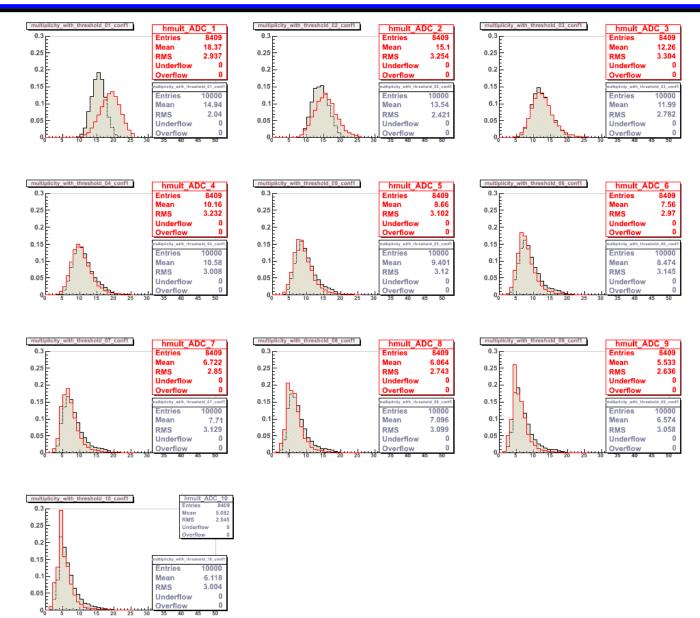
FPN / Temporal Noise

Performances: summary

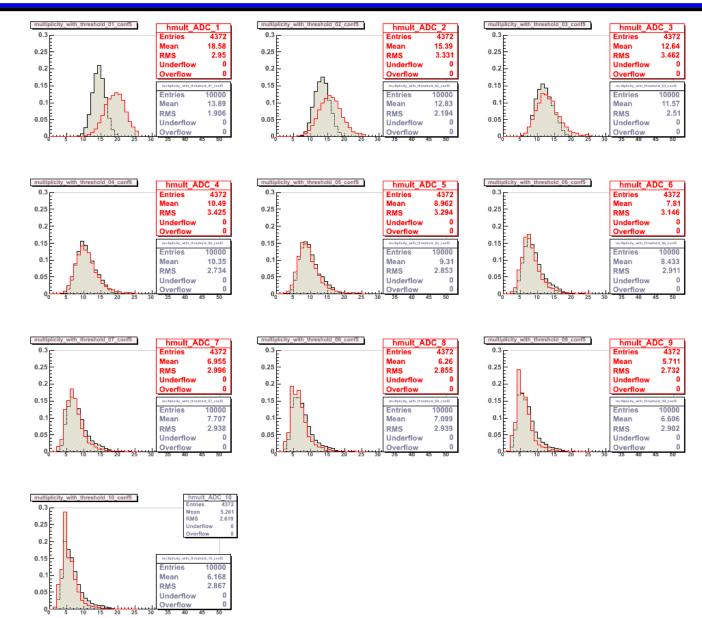
- Fit / model not optimized
 - Address more carefully the weight of 2nd crown pixels
 - ➤ small number of entries ⇒ uncertainty underestimated
 - ➤ Reduce range of the 2D fit ?
 - Focus should me made on the response of the 8 neighbouring pixels
 - Determines multiplicity (particularly for digitized chips)
 - Determines resolution
 - Determines hit separation performances
 - Global response is already encouraging
 - Limited number of parameters (Noise, epitaxial layer + 2D double gaussian)
 - Multiplicity can be reproduced
 - Still many optimization to be done
 - Model could be simplified
 - each Q_i of a given segment has to be randomly adressed to one pixel
 - > Option: suppress random part and charge only with PDF values.

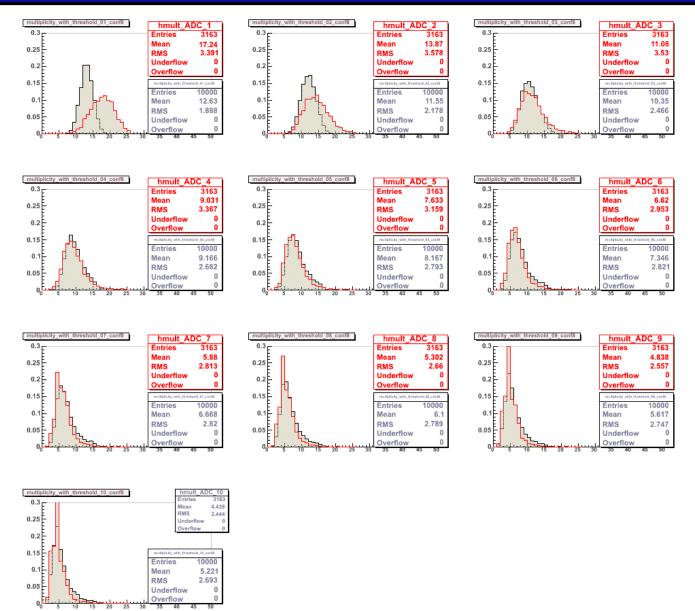

DIGMAPS: summary

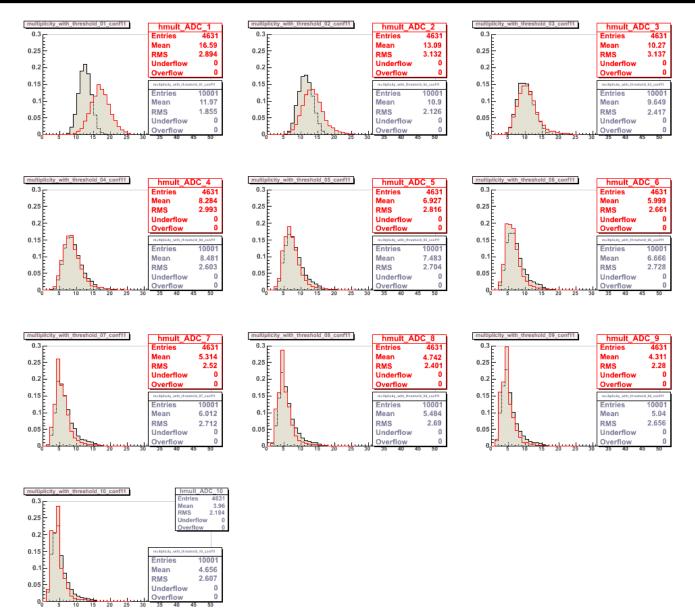
- Tool under development !
- DIGMAPS has been designed as a general tool able to help about
 - Design optimization
 - Digitizer tester for simulations
- Possible studies:
 - sensor(s)/models with a digitised output
 - any other charge transport model
 - Optimize parametrized models for fast sim
 - Optimize ADCs
 - > N bits, dynamic range, Noise, etc.
 - clustering algorithms
 - chip occupancy
 - Hit separation performances
 - Zero suppression blocks, etc.
 - Elongated pixels
 - Study incident angle effects
 - CPU performances vs models
- Long term
 - Get a full simulation chain from GEANT4 to reco
 - Tracking/vertexing studies
 - Alignment studies (AIDA, ...)
 - Double sided chips studies (mini vectors)


Back up

AIDA


- AIDA (EU-FP7 WP9.3) test beam infrastructure (2014)
 - Large area beam tel. (~6x4 cm2)
 - Alignment Investigation Device (AID)
 - Reproduce a VTX detector sector
 - Double sided ladders mounted on precise adjustable stages


Mont Saint-Odile, September 2011


Mont Saint-

Mont Saint-Odile, §

Mont Saint-Odi

Mont Saint-C