Overview

S. Margetis, KSU

Outline

- Task(s) overview
- Hierarchy of Coordinate systems
 - Required precisions in Survey
- Survey structures needs/usage
 - see also other talks
- Alignment methods and needs
- Schedule, Manpower
- Open issues

General Flowchart of Survey/Alignment Tasks

Task features

- Anything we build or touch needs Survey
 - e.g. versioning of same physical PXL sector after repairs
- Survey will freeze position of sensors on ladders and ladders on sector (PXL). Help also with sector on hemisphere (PXL). For SSD/ IST will freeze position of sensors on ladder
 - Alignment can check for gross mistakes but never move sensors on ladder or PXL ladder on sector. Note: this has been our way, not a universal truth
- Survey raw measurements can be saved externally (CVS). Geometry and fitted parameters reside in the Db with a timestamp
- For each yearly Run the in-situ position of major detector elements needs to be rechecked

General Layout

But...OSC and PST are connected(?)

Eric's system definitions

- Three targets define the basic plane A
- The other two B,C are defined as:
 - B is normal to A
 - C is normal to A.and.B
- Targets are surveyed with hundreds of microns accuracy
- General rule: Definition of reference center (0,0,0) should be at the center of gravity of active elements

Reference system(s) issues

- In general (see next talks) survey accuracy of critical components (relative pixel and sensor positions) expected to be better than minimum acceptable values
- Need expected/surveyed positions of targets
 - to build 'ideal' position Db
 - Sub-millimeter accuracies acceptable -> Tracks will fix them
 - Need input on anticipated (design) in-situ position errors and estimated repeatability margins. *Example*:

Precision requirement:

- Pixel relative to Pixel location: 20µm (RMS over entire PXL?)
- PXL detector relative to STAR coordinate system: within 200 µm (?)
 H.Wieman: 14 Nov 2011
- GEANT geometry can/should be also synchronized with Reality instead of the current 'patch-the-hit' scheme
 - STV, VMC environment different from current Geant3

Offline use of Survey Info

Definitions

TGeoHMatrix definition

$$\begin{pmatrix} x_G \\ y_G \\ z_G \\ 1 \end{pmatrix} = \begin{bmatrix} \hat{d}_x & \hat{n}_x & \hat{t}_x & d_x \\ \hat{d}_y & \hat{n}_y & \hat{t}_y & d_y \\ \hat{d}_z & \hat{n}_z & \hat{t}_z & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_L \\ y_L \\ z_L \\ 1 \end{pmatrix}$$

- Survey info is used in initial Local-to-Global transforms and inverse
- Done in terms of TGeoHMatrix
- General form is: $x_G^i = R \cdot x_L^i + T^i$
- This can be e.g. the center of a sensor or a hit. For PXL sensors a distortion function (TPS output) will take care of individual pixels in a wafer.
 - n,d,t are unit vectors and β , α , γ the corresponding rotation angles, RHS

Transform example

$$x_G = (\hat{d}_x \cdot x_L + \hat{n}_x \cdot y_L + \hat{t}_x \cdot z_L) + d_x$$

Local <-> Global transforms A series of matrix multiplications

* LS

* WLL:

Example: \$STAR/StarDb/Geometry/ssd/SsdOnGlobal.upgr01.C

* SG

= Tpc2Global * GL

WG

```
WaferInGlobal= Tpc2Global *SsdinTpc*SectorInSSD*LadderInSector*WaferInLadder
// SSD and SVT as whole
St Survey *SsdOnGlobal = (St Survey *) GetDataBase("Geometry/ssd/SsdOnGlobal");
Survey st *OnGlobal
                        = SsdOnGlobal->GetTable();
 GL.SetRotation(&OnGlobal->r00);
 GL.SetTranslation(&OnGlobal->t0);
// SSD sectors in SSD/SVT system
St Survey *SsdSectorsOnGlobal = (St Survey *) GetDataBase("Geometry/ssd/SsdSectorsOnGlobal");
// ladders in the SSD sector coordinate systems
St Survey *SsdLaddersOnSectors = (St Survey *) GetDataBase("Geometry/ssd/SsdLaddersOnSectors");
// wafers in the SSD ladder coordinate systems
St Survey *SsdWafersOnLadders = (St_Survey *) GetDataBase("Geometry/ssd/SsdWafersOnLadders");
```

Alignment methods (outline only)

- There are 'Global' and 'Self' Alignment methods
 - use 'external' track info or 'internal'
- We lack a hardware monitoring system. Once detectors are installed we rely on survey and alignment software
- We have successful 'Global' methods already in place
 - Software can be re-checked with simulations [->need (now have)
 geometry]. In SVT era precision was 10 microns and 0.1mrad
 - In PXL era should practically vanish
 - Specific alignment procedures might be different (next slide)
- We now have significant sensor overlap to make use of 'Self' alignment methods. Industry standard is 'Millepede' code which was successfully used in Alice and elsewhere

Procedure

OLD ->

NEW ->

TPC only tracks

- Global alignment of SSD (+SVT) with respect to TPC
- (Local) Alignment of SSD ladders:

TPC + SSD tracks

- (Global) Alignment of SVT Clam Shells
- (Local) Alignment of SVT ladders

TPC + SSD + SVT tracks

- Check consistency and
- re-evaluate SVT & SSD hit errors

Statistics needed:

1 mm \rightarrow ~20 micron: reduction factor 50

- \rightarrow ~2,500 tracks per SVT sensor
- → data sample with ~250,000 tracks -> 250K CuCu events

PXL detector is a big asset (avoid TPC distortions):

Primary tracks with TPC+PXL hits

- Relative alignment of PXL halves (check survey)
- Alignment of IST ladders with respect to PXL

Primary tracks with (All - SSD) hits

Alignment of SSD ladders

- For alignment we use "good" (well defined) tracks fitted with the primary vertex.
 - Use of primary tracks significantly improves precision of track predictions in Silicon detectors and reduces influence of systematics.
- In order to minimize TPC space-charge distortions (and PXL pileup) we will need to use low luminosity data

Figure of merit for HFT alignment.

- Pointing accuracy, aka Impact parameter resolution:
 - DCA resolution (in bending XY = $\rho \phi$ plane: σ_{DCA}), and resolution in non-bending plane: σ_z , is figure of merit
 - σ^2_{DCA} = σ^2_{vertex} + σ^2_{track} + σ^2_{MCS} (the same for non-bending plane),
 - primary vertex resolution: $\sigma_{\rm vertex}$ ~ 3µm+(120 µm / $\int N_{\rm ch}$); for central Au+Au collisions turns out to be ~5 µm
 - track pointing resolution: $\sigma_{\text{track}} \sim 1.5 \ \sigma_{\text{XY}}$ in our case, where σ_{XY} is intrinsic detector precision (~10µm) \oplus alignment errors,
 - Multiple Coulomb Scattering (MCS): σ_{MCS} ~ 20 μm / βp (GeV/c) (for thin PXL)
 - Overall mis-alignments of $< 10 \mu m$ are acceptable (no big impact)

Schedule - Manpower

Some sub-system estimates are in following talks

ID	Task-name	Duration	Begin-Date	Predecessors	Resources
1.6.5	Calibration/Alignment	36 months	09/01/2010		%-Person/FTE 500/4.7(2.0)
1.6.5.1 1.6.5.1.1 1.6.5.1.2 1.6.5.1.3	SURVEY PIXEL Survey IST Survey SSD Survey	15(7) months 7(3) months 4(2) months 4(2) months	09/01/2011 09/01/2011 09/01/2011 09/01/2011		190/2.3(1.1) 190/1.1(0.5) 190/0.6(0.3) 190/0.6(0.3)
1.6.5.2 1.6.5.2.1 1.6.5.2.2 1.6.5.2.3	GLOBAL Alignment PIXEL Global Align. IST Global Align. SSD Global Align.	13(6) months 7(4) months 3(1) months 3(1) months	09/01/2011 09/01/2011 09/01/2011 09/01/2011	1.6.2/1.6.3	100/1.3(0.6) 100/0.7(0.4) 100/0.3(0.1) 100/0.3(0.1)
1.6.5.3	SELF Alignment	9(4) months	09/01/2011	1.6.2.1/1.6.2.2	100/0.8(0.2)
1.6.5.3	Test/Verify	3(2) months	09/01/2011	1.6.2.1/1.6.2.2	100/0.3(0.1)
ID 1.6.5.1	Task-name SURVEY	Institutions LBNL, MIT, KSU, BNL	Name Postdoc+Stud	% of time (max) 2x30(40)	Years 3
1.6.5.2	GLOBAL Alignment	LBNL, MIT, KSU, BNL	Postdoc+S <mark>tud.</mark>	2x20(30)	3
1.6.5.3	SELF Alignment	LBNL, MIT, Purdue, BNL	Postdoc/Stud	50(60)	2

- We could use some more people here, especially a student ~50% at LBL
- SSD, IST situation less clear

Schedule

10/2013

18

Open Items/Issues

- Need to finalize the PXL sensor representation in Db. This will be done with the survey of the prototype sector
- Need to setup Data formats, Db(s), code to deliver matrices
- Need to clarify/verify/define reference system (physical) dependencies and hierarchy
- Need to know/map the (realistic) error of every survey step
- Need to start simulations to determine alignment software performance
- Need to rework GEANT geometry synchronization (STV, VMC)
- Need to finalize SSD procedures and initialize/define IST ones
- Need to keep/use expertise around
- Need to rework/prioritize Software Summer activities
- See also sub-system specific issues

Summary

- Activity is picking up
- Critical mass/think-tank is building
- I do not see, or foresee, any show stoppers
- but...most of the work is still ahead of us