HFT Pixel Survey Plan

Qiu Hao (LBNL)

- Transformation frame
- •Precision
- •TPS fitting method

Transformation Frame

Determination of Chip Local Coordinate

Chip local coordinate
is determined by the
feature ideal positions
+ 1 point on sensitive
area

•Can be set up before survey of the whole chip

- •Red: used to restrict
- the coordinate
- •Yellow: ideal position

Determination of Sector Local Coordinate

- •Ball 1 defines origin
- •Ball 1 and 2 define y axis
- •Put ball 3 at designed z
- •Easy to set up on survey machine

х

2

Other Coordinates

- •Ladder local coordinate
 - Not planed to have additional alignment from survey, use ideal transformation from sector
- •Half pixel detector (5 sectors) coordinate
 - In ideal geometry, use STAR global coordinate for north half
- •Whole pixel detector coordinate
 - In ideal geometry, use STAR global coordinate

Precision

- The aim is to get survey precision below hit error (< 20 μ m)
- For one chip surveyed with vision, ~< 5 μ m can be reached
- Not sure about the feather probe and rotation yet
- Mechanic changes (~ 20 µm [Howard, CD1 Review]) may come

after survey

Thermal

Gravity

Humidity

Vibration

Force received during transportation and installation

 Whole pixel detector relative to STAR global ~< 200 µm from fitting data

TPS Method

Thin Plate Spline

Principal Warps: Thin-Plate Splines and the Decomposition of Deformations 김진욱 (이동통신망연구실; rein@mobilenet.snu.ac.kr) etc.

Used to fit survey measurements on a pixel chip, describing a

plane used in the last chip \leftrightarrow pixel transformation

Found and realized in VC by Xiangming, rewriten in ROOT

7

Measurements to Fit and to Test

measured

Fit Result – Chip 1

 $[0]+[1]^*x+[2]^*y+[3]^*x^*x+[4]^*y^*y+[5]^*x^*y+[6]^*x^*x^*x+[7]^*x^*x^*y+[8]^*x^*y^*y+[9]^*y^*y^*y$

Fit Result – Chip 2

[0]+[1]*x+[2]*y+[3]*x*x+[4]*y*y+[5]*x*y+[6]*x*x*x+[7]*x*x*y+[8]*x*y*y+[9]*y*y*y

Fit Result – Chip 3

y (mm)

[0]+[1]*x+[2]*y+[3]*x*x+[4]*y*y+[5]*x*y+[6]*x*x*x+[7]*x*x*y+[8]*x*y*y+[9]*y*y*y (mu) × 16 z (μm) 1/ 0 2 4 6 x (mm)

measured

Difference between Measured and Fit

- •Red: measurements to fit
- •Blue: measurements to test
- •TPS does better job than global pol2 and pol3 fit for a chip

Difference between Measured and Fit

Utilization of TPS

```
With n measurements of (x, y, z)
```

```
Fitting results need to calculate z(x, y):
a0, a1, a2, array x[n], y[n], w[n]
Size in DB and memory if n = 132:
(3+132*3)*10*4*10 \sim 160 \text{ k} -----not a big deal
```

CPU time if n = 132: 0.18 s for 20 k hits (n hits for pile up in RHIC II luminosity) -----acceptable

For circularly curved chip with length 2L = 20 mm, $\Delta z = 100 \text{ µm}$ $\Delta x = 4/3^{*}\Delta z/L = 1.4 \text{ µm} << 20 \text{ µm}$ --Howard

Conclusion

- Transformation frame defined
- \bullet Precision which can be reached is not very clear yet, hopefully below hit error (<20 $\mu m)$
- TPS proposed to be applied for chip \leftrightarrow pixel transformation

Thank you! :-)