HLT-HFT Simulation

Hongwei Ke¹, Hao Qiu^{2,3}, Xiangming Sun⁴

- 1. Institute of Particle Physics, Huazhong Normal University
 - 2. Institute of Modern Physics
 - 3. Brookhaven National Laboratory
 - 4. Lawrence Berkeley Laboratory

Outline

- > HLT tracking performance (TPC)
- > HLT tracking with HFT hits

HLT tracking performance (TPC)

Tracking efficiency w.r.t. offline

p_⊤ resolution

HLT J/ψ selection

Extending tracking to HFT

We extended the tracks from TPC to HFT by helix fit

To take the multiple Coulomb scattering into account, we set a search range when finding a appropriate HFT hit.

The single track pointing resolution for a two layer detector telescope has three terms

$$\sigma^{2} = \frac{\sigma_{1}^{2} r_{2}^{2} + \sigma_{2}^{2} r_{1}^{2}}{\left(r_{2} - r_{1}\right)^{2}} + \frac{\theta_{mcs}^{2} r_{1}^{2}}{\sin^{2}(\theta)}$$

$$\theta_{mcs} = \frac{13.6 (MeV/c)}{\beta p} \sqrt{\frac{x}{X_{0}}}$$

We need the values of $\sqrt{\frac{x}{X_0}}$ for each detector when calculate the search range.

Extending tracking to HFT

For a first time test, we just set a constant search range and tested two situations.

Data set	
Offline	pion embedding
HLT	$D_0 \rightarrow\! \pi^{\scriptscriptstyle +} + K^{\scriptscriptstyle -}$ without the event background

- ✓ The single track efficiency is quite sensitive to the search range. We need a detailed description of multiple Coulomb scattering.
- ✓ We can increase the efficiency by extending the search range. This doable because the ghost will be controlled by TPC tracking.

Summary

- → HLT tracker has a good tracking efficiency w.r.t.
 offline tracker
- \diamond In Run10, HLT has successfully triggered J/ψ events
- When extend to HFT, HLT tracker has a comparable single tracking efficiency to offline tracker, but a detailed multiple Coulomb scattering discretion is needed

THANK YOU!

backup

$$D_0 \rightarrow\! \pi^{\scriptscriptstyle +} + K^{\scriptscriptstyle -}$$
 embedded in pion events