Heavy Flavor Tracker (HFT) : a new inner tracking device at STAR

J. Bouchet, for the STAR Collaboration

Kent State University, Kent, Ohio, US

E-mail: bouchet@rcf.rhic.bnl.gov

Abstract. Due to their large masses, heavy flavor (c and b quarks) are produced in the early stages of heavy ion collision[1]. The measurement of charm meson nuclear modification factor R_{AA} , as well as their flow velocity will be investigated by the HFT. A precise measurement of heavy flavor production could be achieved by identifying the decay of charm meson using direct topological reconstruction and thus disentangling the b and c quarks. The HFT is a proposed new inner tracking detector for STAR. It is composed by the existing Silicon Strip Detector (SSD) and by 2 new detecting devices : the Intermediate Silicon Tracker (IST) and the PIXEL detector. We report recent results about the Λ_c reconstruction, using a full GEANT simulation of STAR detectors.

1. Technical design

The HFT is an assembly of 3 sub-systems, made of different technologies. It is composed by 2 layers of monolithic CMOS Active Pixel sensors[2] which measure with great accuracy the track pointing resolution and to find secondary decays. These very thin layers (50μ m width) minimize the multiple coulomb scaterring (MCS), dominant at this location close to the beam pipe (see Table 1). The mid-rapidity tracking system is made by the IST and the existing SSD ; these detectors allow to guide the reconstructed tracks in the STAR Time Projection Chamber to the PIXEL detector. (plot of STAR detector?).

2. Performances : single track and D⁰ reconstruction efficiency

Simulations were performed using full STAR geometry package with 10k Au+Au events at $\sqrt{s}=200$ GeV embedded with D^0 , D_s , D_s^+ and Λ_c . Pseudo-random hits (pileup) effect is taken into account in the PIXEL detector, corresponding to MinBias collision rate of 80 kHz. It has

Detector	Radius	Technology	Thickness	Hit resolution R- ϕ	Radiation Length
	(cm)		(µm)	(μ m - μ m)	
SSD	23	double sided strips	300	30 - 857	$1\% X_0$
IST	14	Silicon Strip Pad sensors	300	170 -1700	$1.2\% X_0$
PIXEL	2.5 - 8	Active Pixels	50	8.6 - 8.6	$0.3\% X_0$

Table 1. Characteristics of each silicon layer of the HFT

been shown that the pointing resolution for single track is in agreement which the detector design : the distance of closest approach (DCA) of correctly reconstructing tracks‡ to the primary vertex (PV) reaches a value of 30μ m for momentum of 1 GeV and degrades when pileup increases due to ghosting (probability of not assigning the correct MonteCarlo hit) (plot of DCA resolution?). The D^0 efficiency is based on particle identification (PID) of daughter particles provided by the TPC and extended to higher p_T with the time of flight (TOF). Topological cuts have been applied to the D^0 candidates. Fig. 2 shows the good signal significance achievable over a wide range

Fraction of reconstructable D^0 before (red markers) and after (black markers) optimization with a set of cuts based on DCA of its daughters to the PV, isolation cut on $\cos(\theta)$ (θ being the angle between the D^0 momentum and the vector joining the PV to the secondary vertex). Inserted : example of D^0 invariant mass for 7.0< $D^0 p_T$ <7.5 GeV/c

Figure 1. Invariant mass (left) of D^0 and its reconstructed yield as a function of its transverse momentum p_T

of transverse momentum values and the errors extrapolated to 2-3 months of RHIC running time (using 20-40% duty factor in data taking). Fig. 3 show the key measurements for the HFT : on the left the flow parameter v_2 shown for 2 extreme scenarios (charm quark flow equal to light

‡ requires of 15 hits in TPC and 2 hits in PIXEL detector

Figure 2. Signal significance of D^0 as a function of transverse momentum p_T

Figure 3. Charm elliptic flow v_2 and R_{cp} with HFT

quark flow (red) and charm quark does not flow (green)). The HFT will be able to distinguish with great accuracy (error bars) these 2 cases. Fig. 3 right shows the flavor suppression factor R_{cp} of D^0 : the HFT will be able to measure energy loss directly via hadronic channel thus avoiding indirect method using non photonic electrons.

3. Λ_c reconstruction

A measurement of Λ_c would be useful to perform since the Λ_c/D^0 ratio may be enhanced then indicating a similar pattern as for the baryon/meson ratio in the intermediate p_T region[3]. Details of simulation can be found at [4]. 2 scenarios are investigated for the Λ_c/D^0 ratio : no enhancement and ratio flat equal to 0.2 and an enhancement equal to Λ/K_s^0 . We see from Fig. 4 that the statistical errors are well distinguished, making a measurement of baryon/meson ratio in charm sector with good precision in HI collisions.

Figure 4. Expected Λ_c/D^0 ratio measurement

4. Summary

The HFT, by using low mass CMOS sensors, will be able to reconstruct direct charm hadrons over a large momentum range thus study flow and energy loss of heavy flavor particles. New measurement such as baryon/meson ratio in the charm sector are also envisaged and have been studied.

References

- [1] Z. Lin and M. Gyulassy, Phys. Rev. C 77 (1996) 1222.
- [2] E. Anderssen et al., A Heavy Flavor Tracker for STAR (http://rnc.lbl.gov/hft/docs/hft_final_submission_version.pdf)
- [3] Lee et al., Phys. Rev. Lett., **100** (2008),22230
- [4] J. Kapitan, STAR inner tracking ugrade A performance study, proceeding of HotQuarks 2008