D* Reconstruction with HFT

Mustafa Mustafa Purdue University

Data:

- 10,000 events |Vz_{MC}| <5.0 cm
- 99.9% reconstructed |Vz| <5.0 cm
- 10 D*+ -> D0 + pi+ (0-10 GeV/c flat)
- D* |η| <1.0

PID:

•Assuming Ideal PID for kaons and pions

•Global tracks for D^o and primary tracks for the soft pion

Plots above for D⁰ daughter kaons and pions

D ⁰ HFT cuts from CDR				
PIXEL hits	2			
DCA (primary vertex)	>= 50 µm			
DCA_kπ	<= 50 μm			
cos(θ)	>=0.98			
Δm	<= 35 MeV/c^2			

Before HFT Cuts

After HFT Cuts

Plots above for D⁰ daughter kaons and pions

Before HFT Cuts

After HFT Cuts

Plots above for D⁰ daughter kaons and pions

D⁰ Efficiency

Procedure:

1) Find D⁰ reconstructed kaons and pions which pass the track quality cuts

- 2) Reconstruct the D⁰ mass by swimming global tracks
- 3) Calculate efficiency in each pT bin

Comparison to Yifei's CDR D⁰ efficiency

Note: Yifei used TOF PID

Suggested more cuts

 θ^* is the angle between the kaon momentum in the D0 rest frame and the D0 momentum in the lab frame

 $cos(\theta^*)$ for D0 which passed the HFT cuts

 $cos(\theta^*)$ for k⁻ π^+ which passed the HFT cuts

Rejected all k π pairs which have: 1) cos(θ^*) > 0.90 2) pT<4.0 && cos(θ^*)>0.6 3) pT<3.0 && cos(θ^*)<-0.5

 $\cos(\theta^*)$ for D0

Opening angle α

We can consider placing a cut on the opening angle.

03/11/11

D⁰ Efficiency After cos(θ*) cut

D⁰ background spectrum

03/11/11

$D^0 p_{\tau}$ spectrum using PYTHIA

For most central events $N_{binary} = 10^3$

Note: PYTHIA is tuned to CDF Tune A Setting (CTEQ5L) + Peterson fragmentation function. Tuning details are available later in the slides and in the backup slides 03/11/11

D^o Yield in run14

$$\frac{d^2 N(p_T)}{dp_T d\eta} = f_{cent} * \mathscr{L} * \sigma_{Au+Au} * \text{Duty Factor}$$
$$* \operatorname{Br}(D^0 \to \mathrm{K}^- \pi^+) * \varepsilon_{reco}(p_T) * \varepsilon_{vtx} * \frac{1}{N_{evt}} \frac{d^2 N(p_T)}{dp_T d\eta} \Big|_{Au+Au}$$

For most central events $f_{cent} = 0.10$ Max Luminosity = 21 nb⁻¹ Min Luminosity = 3.3 nb⁻¹

$$\sigma_{Au+Au} = 7 b$$

Duty Factor = 0.70

$$Br(D^{0} - k^{-} \pi^{+}) = 0.0389$$

 $\epsilon_{vtx} (|V_{z}| < 5.0) = 0.20$

Significance

Before cut on $\cos(\theta^*)$

D0 significance at min luminosity

Reconstructed D* signal

03/11/11

 $M(D^{*}) - M(D^{0})$

Placing a cut on 0.1444< $M(D^*) - M(D^0) < 0.1464$ PDG value is 0.1454 GeV/c^2 $\Delta m = 1.0 \text{ MeV}$

D* Efficiency

$D^* p_{\tau}$ spectrum using PYTHIA

10m p+p @ 200GeV minBias PYTHIA events

Pythia Tunning:

// CDF Tune A Setting (CTEQ5L) http://www.phys.ufl.edu/~rfield/cdf/tunes/py_tuneA.html // Peterson Fragmentation function

pythia->SetPARP(67,4.0); //Scale factor of the initial-state radiation pythia->SetMSTP(81,1); //Turns on multiple parton interactions pythia->SetMSTP(82,4); //Double Gaussian matter distribution pythia->SetPARP(82,2.0); // Cut-off for multiple parton interactions, PT0. pythia->SetPARP(83,0.5); //Warm Core: 50% of matter in radius 0.4. pythia->SetPARP(84,0.4); //Warm Core: 50% of matter in radius 0.4. pythia->SetPARP(85,0.9); //Probability that the MPI produces two gluons with color connections to the "nearest neighbors". pythia->SetPARP(86,0.95); //Probability that the MPI produces two gluons either as described by PARP(85) or as a closed gluon loop. The remaining fraction consists of quark-antiquark pairs. pythia->SetPARP(89,1800.0); //Determines the reference energy E0. pythia->SetPARP(90,0.25); // Determines the energy dependence of the cut-off PT0 as follows $PT0(Ecm) = PT0(Ecm/E0)PARP(90).PT0(Ecm) = PT0(Ecm/E0)^PARP(90)$ pythia->SetMSTJ(11,3);//Peterson Fragmentation pythia->SetMSEL(1); //.. Minimum-bias

//03/1and initialise it to run p+p at sqrt(200) GeV in CMS pythia->Initialize("cms", "p", "p", 200);

D* p_T spectrum p+p

03/11/11

D* Yield in run14

 $\frac{d^2 N(p_T)}{dp_T d\eta} = f_{cent} * \mathscr{L} * \sigma_{Au+Au} * \text{Duty Factor}$ $* \operatorname{Br}(D^* \to D^0 \pi^+) * \operatorname{Br}(D^0 \to K^- \pi^+)$ $* \varepsilon_{reco}(p_T) * \varepsilon_{vtx} * \frac{1}{N_{evt}} \frac{d^2 N(p_T)}{dp_T d\eta} \Big|_{Au+Au}$

For most central events $f_{cent} = 0.10$ Max Luminosity = 21 nb⁻¹ Min Luminosity = 3.3 nb⁻¹

$$\sigma_{Au+Au} = 7 b$$

Duty Factor = 0.70

$$Br(D^* -> D^0 \pi^+) = 0.677$$

Br(D^0 -> k^- \pi^+) = 0.0389
$$\epsilon_{vtx} (|V_z| < 5.0) = 0.20$$

D* background spectrum

 $\frac{1}{N_{evt}}\frac{d^2N_{bg}(p_T)}{dp_Td\eta}$

Background in run14

$$\frac{d^2 N_{bg}(p_T)}{dp_T d\eta} = f_{cent} * \mathscr{L} * \sigma_{Au+Au} * \text{Duty Factor}$$

$$* \varepsilon_{vtx} * \frac{1}{N_{evt}} \frac{d^2 N_{bg}(p_T)}{dp_T d\eta}$$

Significance

To be done

1) Currently the background spectrum is done by removing the contribution from the embedded particles only. It needs to be revisited.

2) TOF PID.

3) Try to tune the different cuts and see their effect on the efficiency and significance.

4) Tune PYTHIA to the observed ccbar cross-sections at RHIC, I still need those. Please provide them if you have them.

Backup Slides

Details of a short PYTHIA study with different tunings

Tuned PYTHIA

1m pp @ 200GeV minBias pythia events

Pythia Tunning:

TPythia6* pythia = new TPythia6;

pythia->SetMRPY(1, seed); //.. set random number seed.

pythia->SetPARP(91, 1.5); //.. kT pythia->SetMSTP(33,1); //.. request the use of common K factor pythia->SetMSTP(32, 4); //.. Q2 scale option pythia->SetPARP(31, 3.5); //.. K factor for charm and bottom pythia->SetPMAS(5, 1, 4.1); //.. bottom mass pythia->SetPMAS(4, 1, 1.25); //.. charm mass

pythia->SetMSEL(1); //.. Minimum-bias

// ... and initialise it to run p+p at sqrt(200) GeV in CMS
pythia->Initialize("cms", "p", "p", 200);

D* pT shape before eta cut.

 $1/N_{evt} * d^2N/dpT/d\eta (|\eta| < 1)$ after $|\eta| < 1.0^3$ cut

03/11/11

Default PYTHIA

1m pp @ 200GeV minBias pythia events

Pythia Tunning:

TPythia6* pythia = new TPythia6;

pythia->SetMRPY(1, seed); //.. set random number seed.

pythia->SetMSEL(1); //.. Minimum-bias

// ... and initialise it to run p+p at sqrt(200) GeV in CMS
pythia->Initialize("cms", "p", "p", 200);

D* eta shape before eta cut.

D* pT shape before eta cut.

 $^{03/11/11}$ 1/N_{evt} * d²N/dpT/dŋ

 $1/N_{evt}$ * d²N/dpT/dŋ (|ŋ| <1) after |ŋ| <1.0 cut $^{-34}$

 $d\sigma/d\eta(|\eta|<1) = 42 \text{ (mb) * Integral}(1/\text{Nevt*dN/dpt/d}\eta,0<\text{pt}<\text{inf}) = 15 \ \mu\text{b}$

CDF Tune A PYTHIA

10m p+p @ 200GeV minBias pythia events

Pythia Tunning:

// CDF Tune A Setting (CTEQ5L) http://www.phys.ufl.edu/~rfield/cdf/tunes/py_tuneA.html

pythia->SetPARP(67,4.0); //Scale factor of the initial-state radiation pythia->SetMSTP(81,1); //Turns on multiple parton interactions pythia->SetMSTP(82,4); //Double Gaussian matter distribution pythia->SetPARP(82,2.0); // Cut-off for multiple parton interactions, PT0. pythia->SetPARP(83,0.5); //Warm Core: 50% of matter in radius 0.4. pythia->SetPARP(84,0.4); //Warm Core: 50% of matter in radius 0.4. pythia->SetPARP(85,0.9); //Probability that the MPI produces two gluons with color connections to the "nearest neighbors". pythia->SetPARP(86,0.95); //Probability that the MPI produces two gluons either as described by PARP(85) or as a closed gluon loop. The remaining fraction consists of quark-antiquark pairs. pythia->SetPARP(89,1800.0); //Determines the reference energy E0. pythia->SetPARP(90,0.25); // Determines the energy dependence of the cut-off PT0 as follows PT0(Ecm) = PT0(Ecm/E0)PARP(90).PT0(Ecm) = PT0(Ecm/E0)^PARP(90)

pythia->SetMSEL(1); //.. Minimum-bias

// ... and initialise it to run p+p at sqrt(200) GeV in CMS pythia->Initialize("cms", "p", "p", 200);

D*+D*bar eta shape before eta cut.

D*+D*bar pT shape before eta cut.

 $1/N_{evt} * d^2N/dpT/d\eta (|\eta| < 1) after |\eta| < 1.0 cut^{37}$

03/11/11

 $1/N_{evt} * d^2N/dpT/d\eta$

 $d\sigma/d\eta (|\eta|<1)$

 $d\sigma/d\eta(|\eta|<1) = 42 \text{ (mb)} * \text{Integral}(1/\text{Nevt*dN/dpt/d}\eta,0<\text{pt}<\text{inf}) = 32 \mu b$

03/11/11

$d\sigma/d\eta(|\eta|<1)$ and relative yields calculated from PYTHIA simulations

dơ/dŋ(ŋ <1) Meson	Default	Tuned	Tune A	TuneA+Peterso n Frag.Fun.
D*+D*bar	30 µb	58.6 µb	29 µb	28.9 µb
D0+D0bar	63 µb	119 µb	58.7 µb	58.9 µb
D+ + D-	19 µb	38 µb	19.7 µb	19.5 µb
D_s+ + D_s -	12.5 µb	22.5 µb	11.8 µb	11.5 µb
Total	124.5 µb	238.1 µb	119.2 µb	118.8 µb

Default	
D*+D*bar / D0+D0bar	0.48
D+ + D- / D0+D0bar	0.30
D_s+ + D_s - / D0+D0bar	0.20

Tuned	
D*+D*bar / D0+D0bar	0.49
D+ + D- / D0+D0bar	0.34
D_s+ + D_s - / D0+D0bar	0.20

CDF Tune A	
D*+D*bar / D0+D0bar	0.51
D+ + D- / D0+D0bar	0.31
D_s+ + D_s - / D0+D0bar	0.13

CDF Tune A + Peterson Frag. Func.		
D*+D*bar / D0+D0bar	0.49	
D+ + D- / D0+D0bar	0.33	
D_s+ + D_s - / D0+D0bar	0.20	

$\sigma\,$ and relative yields calculated from PYTHIA simulations

σ Meson	Default		Tuned	Tune A	TuneA+P Frag. F	eterson ⁻ unc.
D*+D*bar	240 µb		414 µb	220 µb	220	μb
D0+D0bar	486 µb		850 µb	447 µb	447	μb
D+ + D-	156 µb		270 µb	143 µb	144	μb
D_s+ + D_s -	90.5 µb		156 µb	85 µb	85.5	μb
~ total ccbar σ	486.25 µl	С	845 µb	447.5 µb	448.25	5 µb
Default				Tune	d	
D*+D*bar / D	0+D0bar	0.49		D*+D*bar / D0+D)0bar	0.49
D+ + D- / D()+D0bar	0.32		D+ + D- / D0+D	0bar	0.32
D_s+ + D_s - /	D0+D0bar	0.19		D_s+ + D_s - / D0+D0bar		0.19
CDF Tune A + Peterson Frag. Func.						
D*+D*bar / D	0+D0bar	0.47		D*+D*bar / D0+D	00bar	0.49

0.30

0.17

D+ + D- / D0+D0bar

D_s+ + D_s - / D0+D0bar

D+ + D- / D0+D0bar	0.32
--------------------	------

D_s+ + D_s - / D0+D0bar	0.19
-------------------------	------

Comparison of D* invariant yield Xin Dong's result to CDF tune A (CTEQ5L) + Peterson Fragmentation function

