

STAR Heavy Flavor Tracker

Spiros Margetis (Kent State Univ.) for the STAR Collaboration

ICNFP2014, August 5, 2014, Crete, Greece

Outline

- Physics motivation
- Design
 - Heavy Flavor Tracker
 - PiXeL detector
 - Monolithic Active Pixel Sensors
- Status and performance
 - Status
 - Signal, pedestal and noise scan
 - Efficiency
 - Survey and alignment
 - Hit residual and track DCA
- Summary

Physics Motivation

- Heavy flavor
 - $m_{b,c} \gg T_C, \Lambda_{QCD}, m_{u,d,s}$
 - Produced early in initial hard scatterings
 - Total number conserved in system evolution at RHIC
- However, it's also difficult to study heavy flavor quarks in experiments
 - Limited yield comparing with light flavor particles
 - Short lifetimes, large combinatorial background for direct reconstruction of open heavy flavor hadrons without displaced decay vertex reconstruction
 - Large kinematics smearing for studies with electrons from semi-leptonic decay
- A precision vertex detector will be an important tool to assess HF physics.

Good probe to QGP

STAR * How Heavy Flavor Tracker Helps

- HFT can be used to study heavy flavor production by reconstruction of displaced decay vertices
 - $D^0 \rightarrow K^- \pi^+$
 - BR = 3.83 % cτ ~ 120 μm
 - $\Lambda_c^+ \rightarrow p \ \mathrm{K}^- \pi^+$
 - BR = 5.0 % cτ ~ 60 μm
 - B mesons $\rightarrow J/\psi + X$ or e + X
 - cτ ~ 500 μm

Examples of Physics with HFT

- Total charm yield baseline for charmonium suppression & coalescence
 R_{CP}, R_{AA} energy loss mechanism, QCD in dense medium
 - Charm collectivity

STAR 🛧

- energy loss mechanism, QCD in dense med degree of light flavor thermalization
- Low radiation length enables reconstruction of D⁰ down to very low p_T, enabling more direct and precise measurement of total charm cross section and charm flow.
- Separating charm and beauty probing the medium with heavy quarks with different masses

HFT in STAR

Full azimuthal particle identification at mid-rapidity

HFT Design

Silicon Strip Detector:

existing detector with new faster electronics

double sided silicon strip modules with 95 µm pitch

 $\sigma_{r-\phi}$: 20 μm σ₇: 740 μm

X/X₀: 1 %

Intermediate Silicon Tracker:

single-sided double-metal silicon pad sensors with 600 μ m × 6 mm pitch

σ _{r-φ} : 170 μm	σ _z : 1800 μm
radius: 14 cm	X/X _o < 1.5 %

The task of SSD and IST is to guide the track from TPC to the innermost PXL detector with high hit density.

STAR A Pixel Detector Design

xy constraint x constraint

3 kinematic mounts locate the PXL half on the PXL supporting tube.

PXL insertion can be done in ~12 hours, by pushing PXL halves along rails and latching on kinematic mounts. 2 sets of PXL detectors and 40 spare ladders are made, to replace damaged detector units when needed.

PIXEL detector

- 10 sectors * 4 ladders (1 inner + 3 outer) * 10 Monolithic
- Active Pixel Sensors (MAPS)
 - 20.7 µm pixel pitch
 - thinned down to 50 μm
 - used in a collider experiment for the first time

light carbon fiber support

- radius:
 - 2.9 cm (inner)
 - 8.2 cm (outer)
- $\sigma: \sqrt{\left(\frac{20.7}{\sqrt{12}}\right)^2 + 5^2}$ = 7.8 µm vibration
- X/X₀: 0.4 % / layer
- 360 M pixels in total
- air cooled

STAR 🛧 **Monolithic Active Pixel Sensors**

22710 µm

HFT Status

a cosmic event

a Au+Au 200 GeV event

- The **full** system has been installed ahead of RHIC 2014 running to take cosmic data for alignment (before Feb. 9 and whenever there is long time with no beam). We also tested 3 PXL sectors in Run-13.
- Some detector performance optimization was done during 14.5 GeV Au+Au run (Feb. 14 ~ Mar. 11)
- 200 GeV Au+Au data taking with PXL and IST since March 15. Collected ~1.2 Billion events so far.
- SSD commissioned later in the run collected about 150 Million events so far.

Damage and Remediation

STAR 🛧

PXL inner

PXL outer

IST

22 20

18 16

14 12

10

8

6

70

80

90

100

number of bad / non-uniform PXL inner sensors

14 %

1%

4 %

100 inner sensors in total

110

120

130 day

Most PXL sensor damages appear to be radiation related damage possibly due to latch up in thinned sensors.

Minimal or no damage for > 1 month: our operational methods were successful at stopping or greatly reducing the rate of damage.

- PXL and IST are only turned on when collision rate < 55 kHz.</p>
- the full PXL detector resets every 15 minutes
- Latch up thresholds changed from 400 mA to 120 mA above the measured operating current for each ladder

Efficiency

hits / projection

- Before the detector response optimization and running with the beam
- Average = 97.2 %
- Tuning for including HFT in tracking is going on...

IST efficiency measured with cosmic ray: hits / projection

Average = 98.6 %

Survey and Alignment

PXL sensor surface profile from survey

+- 30 µm > PXL hit error

Coordinate Measurement Machine is used to survey HFT detector parts.

PXL hit residual distribution before and after PXL half to half alignment

Hit Residual and Track DCA

PXL hit residual to cosmic track projection after PXL sector alignment: σ < 25 µm, match the design goal

match IST pad size

Achieved CD4 goal: 60 μ m for kaon with p_T = 750 MeV/c

Summary

- STAR Heavy Flavor Tracker will enable or enhance many open heavy flavor measurements, by reconstructing open heavy flavor hadrons with displaced decay vertices.
- State-of-art MAPS technology is used for the first time in a collider experiment in the PXL detector.

- All 3 sub-detectors (PXL, IST, SSD) were assembled and inserted into STAR before RHIC year 2014 running.
- With survey and preliminary alignment, we already achieved ~30 microns pointing resolution for high p_T tracks reconstructed with HFT hits.
- Data taking with PXL and IST reached our goal for this year. p+p 200 GeV and more Au
 +Au data will come in runs 15 & 16.
- New physics results with HFT will greatly enhance our understanding of QGP created at RHIC.

Extra Slides

Signal, Pedestal and Noise Scan

• Noise data for PXL and pedestal data for IST and SSD are taken at least once per day without beam, to monitor PXL noise rate, hot pixels, and calibrate IST pedestal.

Qiu Hao

STAR STAR Detector Overview

HFT Design

Sub detector	r (cm)	Sensitive units	σ _{R-φ} (μm)	σ _z (μm)	X/X ₀ (%)
Silicon Strip Detector	22	2 side strips with 95 µm pitch	20	740	1
Intermediate Silicon Tracker	14	500 µm x 1cm strips	170	1800	<1.5
PIXEL	2.5/8	20 µm pixel pitch	12	12	0.4/layer

HFT Status

- Engineering run for PXL prototype (3 out of 10 sectors) finished
 - installed on May 8, 2013
 - within 12 hours
 - first PXL data in daq file on May 10
 - 78 M events taken with PXL
- full system to be installed in 2014

PXL prototype insertion

PXL prototype half

PXL Performance

 2D correlation between measured pxl hit and TPC track projection on a sensor

- Double difference of hit and track projection positions between 2 overlapping sensors Single sensor resolution = 20 / $\sqrt{2}$ = 14 microns
- \sim 12 microns resolution of designed goal

RHIC Run Plan

Run	Energy	Time	System	Goal	
14 ⁽¹⁾	√s _{NN} =200GeV	14-week	Au+Au	HFT & MTD heavy flavor measurements, <i>L</i> =10 nb ⁻¹ , 1000M M.B.	
	√s _{NN} =15GeV	3-week	Au+Au	 Collect 150M M.B. events for CP search Fixed-target data taking⁽³⁾ 	
15(2)	√s _{NN} =200GeV	5-week	p+Au	Study saturation physics, pA-ridge and heavy ion reference, $\mathcal{L}=300 \text{ nb}^{-1}$	
	√s=200GeV	12-week	1) p+p	 Heavy ion reference data <i>L</i>=90 pb⁻¹, 500M M.B. 	
			2) transverse 6 weeks	 2) Study transversity, Sivers effects ⊥=40 pb⁻¹, 60% pol. 	
			 longitudinal weeks 	 3) Study Δg(x) £=50 pb⁻¹, 60% pol. 	

- STAR Beam User Request, endorsed by RHIC PAC.
- Focus on 200 GeV AA, pA, and pp collisions for heavy ion programs with new upgrades.

Signal, Pedestal and Noise Scan

 Noise data for PXL and pedestal data for IST and SSD are taken at least once per day without beam, to monitor PXL noise rate, hot pixels, and calibrate IST pedestal.

Charm Yield, R_{CP} and R_{AA}

HFT CDR (STAR Note SN0600)

STAR ☆ Charm Yield, R_{CP} and R_{AA}

arXiv:1404.6185; subm. to PRL

- Total charm yield
- R_{CP}, R_{AA}

base line for charmonium suppression & coalescence energy loss mechanism, QCD in dense medium

Charm Flow

- $D^0 v_2$ is a more direct measurement of charm flow than non-photonic electron v_2 .
- With HFT STAR is able to measure $D^0 v_2$ at low p_T region, which is sensitive to charm flow.

Charm Yield, R_{CP} and R_{AA}

- Much better precision with HFT than current STAR measurement
- Low radiation length enable reconstruction of D⁰ with p_T starting from ~0, enabling charm total cross section measurement.

STAR * Charm Yield, R_{CP} and R_{AA}

• Probe possible different medium property with different collision energy.

Charm Flow

Charm collectivity

light flavor thermalization?

 Measurements at both LHC and RHIC will explore the change of media properties with energy.

HFT Physics Motivation

• Total charm yield

STAR 🛧

- → base line for charmonium suppression & coalescence
- R_{CP} , R_{AA} of charm and bottom \implies energy loss in QGP
- Charm (D⁰) flow

- tom energy loss in QGP
- thermalization?
- $c\overline{c}$ ($D^0\overline{D^0}$) angular correlation interaction with the medium
- Λ_c^+/D^0 \Longrightarrow test coalescence model

Charm Yield, R_{CP} and R_{AA}

- Much better precision with HFT than current STAR measurement
- Low radiation length enable reconstruction of D⁰ with p_T starting from ~0, enabling charm total cross section measurement.

STAR * Charm Yield, R_{CP} and R_{AA}

• Probe possible different medium property with different collision energy.

Charm Flow

Charm collectivity

light flavor thermalization?

 Measurements at both LHC and RHIC will explore the change of media properties with energy.