D Meson Reconstruction in Au+Au 200 GeV collisions

Sarah LaPointe STAR Analysis Meeting July 7-11, 2009

Outline

- Previous issues
 - $D^0/\overline{D^0}$ ratios
 - Misidentification of daughters
- dE/dx cuts
- D^0 and $\overline{D^0}$ results
- D⁺ through micro vertexing
- D⁺ results
- Plans

Previously

- IPVzI < 10 cm \rightarrow 20M minbias events
- TPC hits ≥ 15
- SVT hits = 3.0
- Dca Daughters \leq 200 μ m
- $50 \le D0$ decay length $\le 300 \ \mu m$
- D0dcaPV ≤ 300 μm
- InSigmaPionl < 2.0
- if $p_K < 1.0$ InSigmaKaonl < 1.0
- p_{K,π}> 150 MeV/c

?

• misidentifying daughters?

• need to have a very pure kaon

Previously

Positive or Negative track with 3 SVT hits $50 \le D0$ decay length $\le 300 \ \mu m$ -1.0 < nSigmaPion < 2.0-1.1 < nSigmaKaon < 1.9 A quick fix using Stephen's nSigma calibrations from V0s. However, the values chosen were for low multiplicity. This may have led to a misidentification of the daughters

Misidentification

Ran D^0 bar finder on PYTHIA D^0 sample that contains I D^0 /evt

The K and π from the D⁰ decay can reconstruct to a D⁰, although the invariant mass distribution is is widened.

- We need reliable particle identificaiton
- Clean Kaon sample

- require $p_K < 1.0 \text{ GeV/c}$
- positive daughter: require $|n\sigma_{\pi}| < 2.0$
- negative track: $|n\sigma_K| < 2.0$, if $p_K < 0.6$ require $|n\sigma_{\pi}| > 2.0$

D⁰ Invariant Mass

s ~ 2240 ± 1200

- 4.4 M minimum bias Au+Au events in |pvZ| < 10 cm
- SVT hits = 3
- TPV > 15
- D0dcaPV < 300 μ m
- D0 decay length < $350 \,\mu m$
- Dca Daughters $< 200 \,\mu m$
- dE/dx cuts (previous slide)

$\overline{D^0}$ Invariant Mass

- 4.4 M minimum bias Au+Au events in |pvZ| < 10 cm
- SVT hits = 3
- TPV > 15
- $D0dcaPV < 300 \ \mu m$
- D0 decay length < 350 μ m
- Dca Daughters < 200 μm
- dE/dx cuts (previous slide)

distribution is wider and shiftedadd Stephen's nSigma calibrations

$D^0 + \overline{D^0}$ Invariant Mass

s ~ 3340 ± 1200

- 4.4 M minimum bias Au+Au events in |pvZ| < 10 cm
- SVT hits = 3
- TPV > 15
- $D0dcaPV < 300 \ \mu m$
- D0 decay length < 350 μ m
- Dca Daughters $< 200 \, \mu m$
- dE/dx cuts (previous slide)

Same sign background

- Like sign background does not have quite the same shape as opposite sign
- Number of entries does not make sense
- Geometrical cuts could be the cause

D⁰ pt distribution

D⁺ using micro vertexing

- Use D0 finder code to reconstruct $K\pi$ (pair #1)
- Loop again over Kπ (pair #2)
- Require pair #1 and pair #2 to have the same K
- Require pion from pair #1 is not the pion in the pair #2

Event and D⁺ cuts

```
\bullet |PVz| < 10 \text{ cm}
```

• Trigger Id = 200013, 200001,or 200003 Events analyzed → 6.9M minimum bias events (FF)

```
• TPC hits \geq 15
```

- SVT hits = 3 for all three daughters
- Dca Daughters $\leq 200 \ \mu m$
- D0 decay length $\leq 800 \ \mu m$
- D0dcaPV $\leq 400 \ \mu m$
- $|nSigma\pi_1| < 2.0, |nSigma\pi_2| < 2.0, |nSigmaK| < 2.0$
- $p_K > p_\pi$
- $p_{K,\pi} > 150 \text{ MeV/c}$

D⁺ Invariant Mass

Plans

\mathbf{D}^0

Understand the D^0/D^0 bar problem

- Add Stephen's nSigma calibrations Stephen Baumgart has worked on this using V0s.
- understand D0 pT spectrum

D^+

Nathan Joseph, an REU student, is working with me on this.

- Analyze additional events
- D⁻ code