1 dictionary for first production

$\mathbf{p t}$: transverse momentum of D0 candidate
mass : mass of D0 candidate
pTK : transverse momentum of kaon daughter (see note 5)
pTPi : transverse momentum of pion daughter
siliconHitsK : number of silicon hits (SSD+SVT) for kaon daughter
siliconHitsPi : number of silicon hits (SSD+SVT) for pion daughter
angle : angle of kaon daughter with the D0 momentum in D0 frame
momentum : momentum of D0 candidate
ffake : mass of D0 with kaon track rotated
SigmaK : ndEdx of kaon daughter
SigmaPi : ndEdx of pion daughter
$\mathbf{p K}$: momentum of kaon daughter
pPi : momentum of pion daughter
flag: number of tracks in this event
dcaXY_K : distance of closest approach to primary vertex in transverse direction for the kaon daughter
dcaXY_Pi : distance of closest approach to primary vertex in transverse direction for the pion daughter
dcaZ_K : distance of closest approach to primary vertex in longitudinal direction for the kaon daughter
$\mathbf{d c a Z} \mathbf{P i}$: distance of closest approach to primary vertex in longitudinal direction for the pion daughter
sigmaDcaXY_K : error of DCA in transverse direction for the kaon daughter, see note $\mathbf{1}$
sigmaDcaXY_Pi : error of DCA in transverse direction for the pion daughter
sigmaDcaZ_K : error of DCA in longitudinal direction for the kaon daughter
sigmaDcaZ_Pi : error of DCA in longitudinal direction for the pion daughter
chargeK : sign of kaon daughter
chargePi : sign of pion daughter
DCAXY_p : see note 2
DCAZ_p : see note 2
trackXYT : distance between daughter tracks at the secondary vertex in transverse direction, see note 6
trackZT : distance between daughter tracks at the secondary vertex in longitutinal direction
decayXYT : distance between the primary and secondary vertex in transverse direction
gRefMult : multiplicity of tracks
slength_tcfit : signed decay length from TCFIT
dslength_tcfit : error or signed decay length
prob_tcfit : see note 4
chisq_tcfit : chisquare of the least square fit
rapD0 : rapidity of the D0 candidate
myLxy : see note 3
myAngle : see note 3
eta : pseudo-rapidity of D0 candidate

1.1 note 1

it's the quadratic sum of the single track error obtained from the covariance matrix and the error of the primary vertex

1.2 note 2

Spiros wanted this calculation when we started to work with MuKpi macro
StThreeVectorD PTOT = P0+P1; //sum of momentum of daughters StThreeVectorD CROSS = decayC.cross(PTOT);
Double_t DCAXY_p = TMath::Sqrt(CROSS.x()*CROSS.x() + CROSS.y()*CROSS.y()); DCAXY_p = DCAXY_p/PTOT.mag(); Double_t DCAZ_p = CROSS.z()/PTOT.mag();

1.3 note 3

myLxy and myAngle refers to :
calculation of angle a-la-HFT : angle> .98 in lab Frame
TVector3 dec ($0,0,0$);
dec.SetX(decayT.x());
dec.SetY(decayT.y());
dec.SetZ(decayT.z());
TVector3 $\mathrm{pTot}(0,0,0)$;
pTot.SetX(PTOT.x());
pTot.SetY(PTOT.y());
pTot.SetZ(PTOT.z());
float myangle $=$ dec.Angle (pTot); [angle btw the line joining the PV and SV and the momentum of D0]
Float_t Lxy $=0$;
Float_t D0px = PTOT.x();
Float_t D0py = PTOT.y();
Lxy = (1/TMath::Sqrt(D0px*D0px + D0py*D0py)) * (D0px*decayC.x() + D0py*decayC.y()); [Lxy is the 2 D decay length projected on the D 0 momentum]

1.4 note 4

It comes from the root definition :
http://root.cern.ch/root/html526/TMath.html\#TMath:Prob
$\mathrm{P}(\mathrm{a}, \mathrm{x})$ represents the probability that the observed Chi-squared for a correct model should be less than the value chi2.

1.5 note 5

kaon daughter is chosen by assuming the kaon mass for a given track (the same is done for the pion daughter)

1.6 note 6

This uses THelixTrack

2 cuts

- EVENT level

1. triggerId : 200001, 200003, 200013
2. Primary vertex position along the beam axis : \mid zvertex $\mid<10 \mathrm{~cm}$
3. Resolution of the primary vertex position along the beam axis: \mid zvertex $\mid<200 \mu \mathrm{~m}$

- TRACKS level

1. Number of hits in the vertex detectors: SiliconHits>2 (tracks with sufficient DCA resolution)
2. Momentum of tracks $p>.5 \mathrm{GeV} / \mathrm{c}$
3. Number of fitted TPC hits > 20
4. $|\eta|<1$
5. dEdxTrackLength $>40 \mathrm{~cm}$
6. DCA to Primary vertex (transverse) DCAxy $<.1 \mathrm{~cm}$

- DECAY FIT level

1. Probability of fit >0.1
2. \mid slength $\mid<0.1$
3. Particle identification : $\mathrm{ndEdx}:\left|\mathrm{n} \sigma_{K}\right|<2,\left|\mathrm{n} \sigma_{p i}\right|<2$
