Open charm yields in d+Au collisions at $\sqrt{s_{NN}} = 200 \text{GeV}$

J. Vanfossen CNR STAR Paper Talk 7 2/11/2011

Introduction

- Motivation
- Method
- Direct Reco and Semileptonic Deays
- Cross Section Measurement
- Summary

Why D⁰s?

- D⁰ studies proposed to study nuclear shadowing and parton distribution function in nucleons
- Charm quark coalescence, J/ψ suppression and charm flow tools to study matter produced in collisions at RHIC energies
- D⁰s have short lifetime cτ=124µm, low production rates and large combinatorial background

Dec 12 21:49:45 2007

Why D⁰s at RHIC?

- Most charm cross section measurements done at center of mass energies of 40GeV or less
- $52 < \sqrt{s} < 63$ GeV measurements inconclusive due to inconsistencies between measurements
- Higher energy collider experiments only report results at high pT
- At RHIC energies theoretical results differ significantly
- Precise cross section measurements needed in p +p and d+Au

Method

- Use both direct D⁰ reconstruction and semileptonic decay analyses
- Use 2003 $\sqrt{s_{NN}}$ = 200GeV p+p and d+Au min bias data sets
- Require at least one spectator neutron in ZDC in the Au beam direction for event trigger
- 15.7 million events used

Direct Reconstruction

- Use TPC data
- Pair each oppositely charged Kaon and Pion identified using dE/dx
 - Select candidates with $p_T > 0.3 GeV$ and $|\eta| < 1$
 - Fig.1 uses p⊤>3GeV and |y|<1
 - S/B=1/600, S/√B=6
 - Use Gaussian plus linear fit after mixed event background subtraction
 - Di-hadron correlations can influence shape of background
- Resulting error estimation 15% on D⁰ yield

Semileptonic Decays

- TOFr prototype used to help with PID
 - Coverage $\Delta \phi \approx \pi/30$, -1< η >0
 - Use combination of velocity, TOFr, and dE/dx to identify hadrons and e[±]
 - Use TOF cut of |1/β-1|≤0.03 to eliminate crossing of electron and hadron bands
 - Require electrons to originate at primary vertex

Semileptonic Decays

- $\gamma \rightarrow e^+e^-$ and $\pi^0 \rightarrow \gamma e^+e^-$ major sources of background
 - Estimate background by checking invariant mass and opening angle of every other oppositely charged electron/positron pair reconstructed in TPC
- Simulations using HIJING, PYTHIA, and GEANT were used to estimate efficiency of 60% for electrons with pT>IGeV
- More than 95% of electrons originating from sources other than heavy-flavor semileptonic decays were measured
- Signal clearly above background for $p_T > I GeV$

Non-photonic e Spectra

	$dN(D^0)/dy _{y=0} \ (10^{-2})$	$ d\sigma_{c\bar{c}}^{NN}/dy _{y=0}$ (mb)
D^0	$2.8{\pm}0.4{\pm}0.8$	$0.29{\pm}0.04{\pm}0.08$
$D^0{+}e^{\pm}$	$2.9{\pm}0.4{\pm}0.8$	$0.30{\pm}0.04{\pm}0.09$

- Obtained by subtracting background from inclusive spectra
- D⁰ invariant yields from direct reconstruction solid squares
- 2 fitting methods to extract dN/dy at mid rapidity
- Exponential fit of D⁰ yield in m_T
- Fit both D⁰ and background subtracted non-photonic electron spectra
 - Assume D⁰ follows power law in pT
 - Generate electron spectra from particle composition and decay generators in PYTHIA
 - Power law Parameters in Table

Cross Section

- Use R=ND⁰/NCC^{bar}=0.54±0.05
 from e⁺e⁻ collider data to convert
 D⁰ to cc^{bar} yield
- Use p+p inelastic cross section of 42mb
- Factor of $f = 4.7 \pm 0.7$ used to convert $d\sigma/dy$ at mid-rapidity to total cross section
- $\sigma_{c\bar{c}}^{NN} = dN_{D^0}^{d+Au}/dy \times \sigma_{inel}^{pp}/N_{bin}^{d+Au} \times f/R$
- Cross section of 1.3±0.2±0.4mb for D⁰ alone and 1.4±0.2±0.4mb for D⁰ + semileptionic decays

Cross Section

- Nuclear modification factor of 1.3±0.3±0.3 by taking ration of electron spectra in d+Au and p+p collisions
 - Consistent with binary scaling
- Beam energy dependence of cross section
- PYTHIA and NLO pQCD calculations underestimate cross section
- NLO pQCD calculation with $\mu_F=2m_c$ and $\mu_R=m_c$ (m_c=1.2GeV) reproduces results

Summary

- Use D⁰s to study medium produced in heavy ion collisions
- Use both direct reconstruction of D⁰s and semileptonic decays to study charm production at RHIC
- Report charm cross section measurement