Elliptic Flow

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{3}N}{p_{T}dydp_{T}d\phi} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dydp_{T}} \left[1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\phi - \psi)) \right]$$

- \forall = event plane angle
- v_2 = elliptic flow parameter

- Hard scattering of initial-state partons may cause the hydrodynamic description of the system to break down at high p_T .
- Hydrodynamic models describe elliptic flow up to $p_T = 2GeV$.
- Perturbative QCD predicts high energy partons will lose energy as they traverse the dense nuclear medium.
- V_2 may be calculated from the particle distribution with respect to the reaction plane or from two-particle correlation analysis. If azimuthal correlations are caused entirely by correlations with the reaction plane the two methods are identical.
- Correlations localized in both $\eta~$ and $\phi~$ are characteristic of jets.

FIG. 1: Azimuthal distributions with respect to the reaction plane of charged particles within $2 < p_T < 6 \text{ GeV/c}$, for three collision centralities. The percentages are given with respect to the geometrical cross section σ_{geo} . Solid lines show fits by $1 + 2v_2 \cos 2(\phi_{lab} - \Psi_{plane})$.

•
$$2GeV < p_T < 6GeV$$

- Corrected for reaction plane resolution.
- Elliptic flow behavior for all centralities.
- Fitting with 1+ 2v₂ cos(2(∅ ψ)) gives
 - $v_2 = 0.218 \pm 0.003$ (31-77%) $v_2 = 0.162 \pm 0.002$ (10-31%) $v_2 = 0.090 \pm 0.001$ (0-10%)

FIG. 2: $v_2(p_T)$ for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}\%$.

- Obtained from average values of cos(2(\u03c6 - \u03c6)).
- Corrected for reaction plane resolution.
- Larger V_2 for peripheral collisions.
- Non-dissipative hydrodynamics predicts continuous rise of V_2 with p_T .

FIG. 3: $v_2(p_T)$ for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^g/dy = 1000$ (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).

- Min-bias differential elliptic flow compared to calculations using hydrodynamics and perturbative QCD.
- Calculations predict a decrease of V₂ with increasing p_T at high p_T.

FIG. 4: High p_T azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta \eta| < 0.5$ (solid circles) and scaled correlation function for $0.5 < |\Delta \eta| <$ 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).

- Two-particle azimuthal correlation functions for $|\Delta \eta| < 0.5$ and $|\Delta \eta| > 0.5$.
- Large |Δ η | correlation function scaled to match small |Δ η | correlation function for 0.75 < |Δ φ | < 2.25.
- Bump at $\Delta \phi = 0$ may be evidence of hard scattering and fragmentation.
- Large $|\Delta \eta|$ correlation function fitting with $\frac{dN}{d(\Delta \phi)} \approx 1 + 2v_2^2 \cos(2\Delta \phi)$ gives $v_2 = 0.11 \pm 0.02$.

• Azimuthal correlation functions for $|\Delta \eta| > 0.5$ give $v_2 = 0.203 \pm 0.012$ (31-77%) $v_2 = 0.160 \pm 0.007$ (10-31%) $v_2 = 0.091 \pm 0.003$ (0-10%)

- The difference between small and large |Δη| is fit by a Gaussian giving σ = 0.27± 0.09(stat.)± 0.04(sys.) consistent with pp jets at similar energy.
- HIJING event generator predicts of = 0.20± 0.01.

Summary

- The saturation of V₂ and dependence on centrality is inconsistent with nondissipative hydrodynamics but may be consistent with parton energy loss predicted by perturbative QCD.
- Two-particle azimuthal correlation functions for $|\Delta \eta| < 0.5$ and $|\Delta \eta| > 0.5$ suggest a short-range correlated component at high p_T in addition to elliptic flow.