Physics of the Heavy Flavor Tracker at STAR

Nu Xu (for STAR Collaboration)

Nuclear Science Division Lawrence Berkeley National Laboratory

- 1 Hot and dense matter with strong collectivity has been formed in Au+Au collisions at RHIC. Study the properties of the new form of matter requires more penetrating probes like heavy quark. New microvertex detector is needed for STAR experiment
- 2 PHENIX has a similar approach, but with a different philosophy
- **3 DM12** (DOE milestone 2016): "Measure production rates, high pT spectra, and correlations in heavy-ion collisions at $\sqrt{s_{NN}} = 200$ GeV for identified hadrons with heavy flavor valence quarks to constrain the mechanism for parton energy loss in the quark-gluon plasma."

(1) Introduction

(2) Recent results from RHIC

(3) HFT and measurement plan

STAR Physics Focus

1) At 200 GeV top energy

- Study medium properties, EoS
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for the QCD critical point
- Chiral symmetry restoration

Spin program

- Study proton intrinsic properties

Forward program

- Study low-x properties, search for CGC
- Study elastic (inelastic) processes (pp2pp)
- Investigate gluonic exchanges

STAR

Partonic Energy Loss at RHIC

Central Au+Au collisions: light quark hadrons and the away-side jet in back-toback 'jets' are suppressed. Different for p+p and d+Au collisions.

Energy density at RHIC: $\mathbf{\mathcal{E}} > 5 \text{ GeV/fm}^3 \sim 30 \mathbf{\mathcal{E}}_0$

Explore pQCD in hot/dense medium: heavy, early production c,b $R_{AA}(c,b)$ measurements are needed!

"φ-mesons (and other hadrons) are produced via coalescence of seemingly thermalized quarks in central Au+Au collisions. This observation implies *hot and dense matter with partonic collectivity* has been formed at RHIC"

In order to test early thermalization: v₂(p_T) of c- and b-hadrons data are needed!

The QCD Phase Diagram and High-Energy Nuclear Collisions

The QCD Phase Diagram and High-Energy Nuclear Collisions

Quark Masses

X. Zhu, et al, Phys. Lett. **<u>B647</u>**, 366(2007).

- Higgs mass: electro-weak symmetry breaking (current quark mass).
- QCD mass: Chiral symmetry breaking (constituent quark mass).
- Strong interactions do not affect heavy-quark mass.
- New scale compare to the excitation of the system.
- Study properties of the hot and dense medium at the foremost early stage of heavy-ion collisions.

⇒ Explore pQCD at RHIC.

Charm Cross Sections at RHIC

- 1) Large systematic uncertainties in the measurements
- New displaced, topologically reconstructed measurements for c- and b-hadrons are needed ⇒ Upgrade

Heavy Quark Energy Loss

STAR: Phys. Rew. Lett, 98, 192301(2007).

 Non-photonic electrons decayed from - charm and beauty hadrons

2) At $p_T \ge 6$ GeV/c,

 $R_{AA}(n.p.e.) \sim R_{AA}(h^{\pm})!$

contradicts to naïve pQCD predictions

Surprising results -

- challenge our understanding of the energy loss mechanism
- force us to RE-think about the collisional energy loss
- Requires direct measurements of c- and b-hadrons.

Key: Directly reconstructed heavy quark hadrons!

Pythia calculation Xin Dong, USTC October 2005

STAR Detector

Requirement for the HFT

	Measurements	Requirements
Heavy Ion	heavy-quark hadron v ₂ - the heavy-quark collectivity	 Low material budget for high reconstruction efficiency p_T coverage ≥ 0.5 GeV/c mid-rapidity High counting rate
	heavy-quark hadron R _{AA} - the heavy-quark energy loss	- High p _T coverage ~ 10 GeV/c
p+p	energy and spin dependence of the heavy-quark production	- p _⊤ coverage ≥ 0.5 GeV/c
	gluon distribution with heavy quarks	- wide rapidity and p_T coverage

- 1) Low p_T coverage
- 2) Large solid angle coverage

Nu Xu

D⁰ Reconstruction Efficiency

- The thin detector allows measurements down to $p_T \sim 0.5$ GeV/c.
- Essential and unique!

STAR

Heavy Quark in p+p Collisions

Plan for p+p collisions:

200 GeV 500 GeV for σ , not in with full luminosity

NLO pQCD predictions of charm and bottom for the total p +p hadro-production cross sections.

Renormalization scale and factorization scale were chosen to be equal.

RHIC: 200, 500 GeV LHC: 900, 7000, 14000 GeV

Ideal energy range for studying pQCD predictions for heavy quark production.

Necessary reference for both, heavy ion and spin programs at RHIC.

- 200 GeV Au+Au minimum bias collisions (500M events).
- Charm collectivity \Rightarrow drag/diffusion constants \Rightarrow *medium properties!*

- Significant Bottom contributions in HQ decay electrons.
- 200 GeV Au+Au minimum bias collisions (|y|<0.5 500M events).
- Charm R_{AA} *⇒* energy loss mechanism!

Nu Xu

Y. Oh, C.M. Ko, S.H. Lee, S. Yasui, Phys. Rev. <u>**C79**</u>, 044905(2009). S.H. Lee, K.Ohnishi, S. Yasui, I-K.Yoo, C.M. Ko, Phys. Rev. Lett. <u>100</u>, 222301(2008).

Strategies for Bottom Measurement

Measure **Charm** and **Bottom** hadron:

Cross sections, **Spectra and v**₂

- DCA cuts ⇒ c- and b-decay electron distributions and R_{CP}
- 200 GeV Au+Au minimum biased collisions (|y|<0.5 500M events)

The di-Lepton Program at STAR TOF + TPC + HFT

 ✓ Direct radiation from the Hot/Dense Medium

✓ Chiral symmetryRestoration

 ⇒ A robust dilepton physics program extending STAR scientific reach

HFT: removing irreducible correlated charm background!

PHENIX and STAR Comparison

- 2-layer Si hybrid pixels: $x/x_0 \sim 1.2\%$ per layer; 2.5cm inner radius; fast readout - 2-layer Si strips, $x/x_0 \sim 2\%$ $0.5 \le p_T \le 6 \text{ GeV/c:} e^{\pm}$ $2 < p_T \le 6 \text{ GeV/c:} D\text{-mesons...}$ $1 < p_T \le 6 \text{ GeV/c:} B \rightarrow J/\psi$

2-layer CMOS: x/x₀ ~ 0.37% per layer;
2.5cm inner radius; 200µs integration
1-layer* Si strips
SSD: x/x₀ ~ 1%

e, $D^{0,\pm,s,*}$, Λ_c , **B**... 0.5 < p_T < 10 GeV/c: v_2 , R_{AA} **D-D correlation functions**

Physics of the Heavy Flavor Tracker at STAR

1) The STAR HFT measurements (p+p and Au+Au)

(1) Heavy-quark cross sections: $D^{0,\pm,*}$, D_S , Λ_C , B...

- (2) Both spectra (R_{AA}, R_{CP}) and v₂ in a wide p_T region: 0.5 10 GeV/c
- (3) Charm hadron correlation functions
- (4) Full spectrum of the heavy quark hadron decay electrons

2) Physics

- (1) Measure heavy-quark hadron v₂, heavy-quark collectivity, to study the medium properties *e.g. light-quark thermalization*
- (2) Measure heavy-quark energy loss to study pQCD in hot/dense medium
 - e.g. energy loss mechanism
- (3) Measure di-leptions to study the *direct radiation* from the hot/dense medium
- (4) Analyze *hadro-chemistry including heavy flavors*

Physics of the Heavy Flavor Tracker at STAR

1) The STAR HFT measurements (p+p and Au+Au)

(1) Heavy-quark cross sections: $D^{0,\pm,*}$, D_S , Λ_C , B...

(2) Both spectra ($R_{AA,} R_{CP}$) and v_2 in a wide p_T region: 0.5 - 10 GeV/c

(3) Charm hadron correlation functions

(4) Full spectrum of the heavy quark hadron decay electrons

STAR HFT CD1 Review, BNL, September, 2009

Projected Run Plan

- 1) First run with HFT: 200 GeV Au+Au $\Rightarrow v_2$ and R_{CP} with 500M M.B. collisions
- 2) Second run with HFT: 200 GeV p+p ⇔ R_{AA}
- 3) Third run with HFT: 200 GeV Au+Au
 - \Rightarrow Centrality dependence of v₂ and R_{AA}
 - Charm background and first attempt for electron pair measurements
 - $\Rightarrow \Lambda_{C}$ baryon with sufficient statistics

Auxiliary Slides (2)- v_2

