
Evaluation Structures

J. Bouchet/S. Margetis, KSU

- Evaluation/Analysis structures
 - Current (STAR) way
 - An example (to avoid)
- The things we can do/propose

Chain analysis

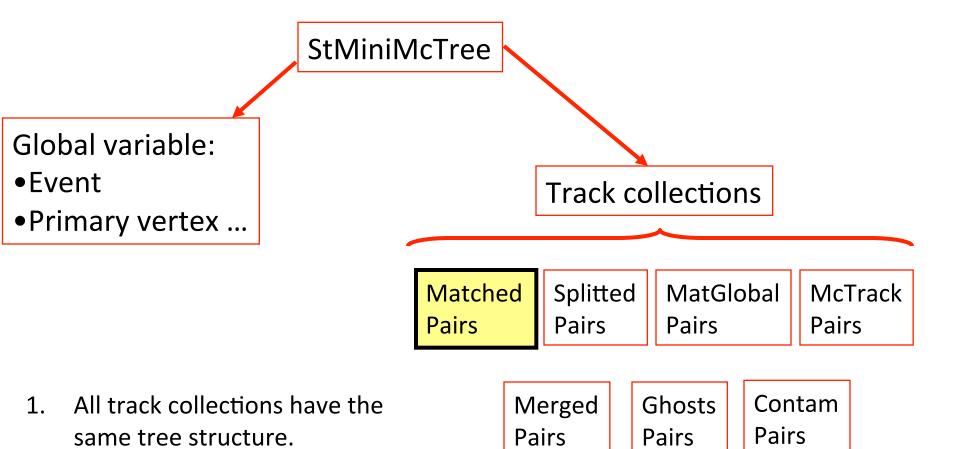
StMiniMcMaker StAssociationMaker:

STAR makers matched reconstructed data and simulated data.

StRecTree

Private maker
Uses event.root to make
recTree containing vertex
and matched track information.

User_analysis.root


Analysis should use STAR framework using minimc.root (for DCA resolution,.etc..) and MuDst (real data).

rectree.root

Single track and pairs analysis shown in CD0-1-R were done using this structure.

- →Does the minimc.root contains all the information needed for our analysis?
- → If not, proposal to modify (without breaking its scheme) the current minimc tree with our needs.

StMiniMcTree structure

For analysis we are using mostly

the matchedPairs collection.

4

MiniMcTree structure

Event level :

- ☑Reconstructed primary vertex position and geant primary vertex position.
- ☑ Multiplicity, number of tracks, event id.
- Track level (for both the MonteCarlo track and the reconstructed track):
 - ☑Kinematic : Pt,Pz,η,φ
 - ☑Geant information: particle geant id, particle parent geant id, start and stop points.
 - Number of hits in detector used during tracking :
 - ☑TPC, SSD
 - **▼**PIXEL, IST
 - ▼TOF information : NTOF hits, TOF Tray Id, TOF module, TOF local hits, TOF pathLength.

MiniMcTree structure (cont')

The DCA is also needed for analysis

1. in minime:

- 1. dcaXYPr, dcaZPr,dcaXYPrMcV,dcaZPrMcV are saved : DCA of primary tracks wrt the reconstructed and MC primary vertex
- 2. The same for global track
- → We should make sure that it corresponds to DCA filled in MuDst tree.

2. in rectree:

- 1. DCAXYPr (DCA in transverse plan wrt the reconstructed primary vertex) and DCAZPr (DCA along Z) are reconstructed (the same is saved also wrt the MC primary vertex)
- → We should also make sure that studies done minimc reproduce the results done with RecTree.

Answer to question

- 4) Then propose what info might be saved in minimc
- currently:
 - Minimc has only information about reconstructed track (daughters tracks):
 - Its start and stop point.
 - For evaluation of secondary vertex, we need the stop point of the parent.
 - This information is saved in geant.root
 - → To avoid multiple loops over different files to recover this information, we would like this information in the minimc tree.
 - → We need the PIXEL and IST hits in the minimc tree
 - done in private code but should check the results.
 - issue: code crashes in DEV (bug #2137) because of StIstHitLoader
 - → We need the TOF information
 - Not only related to HFT.

Answer to question

- 5) Then propose some kind of structure for HFT (initial proposal)
 - → Kalman secondary vertex for pairs analysis.
 - →Should be directly integrated in a general output tree containing event, vertex, track information that all users can use. (according to their analysis).
 - → That means to have a code in /offline/users/HFT (or any official place) where MuDst (real data) are processed to add the secondary vertex information.

A case study - SVT/SSD analysis of D^0s

The following quantities are filled for each event

RunId: id of run
EventId: id of event

 $\mathbf{V}\mathbf{z}$: primary vertex Z position

NTrk: number of all tracks **gRefMult**: gRefMultiplicity

QXE: component X of the Q vector using tracks with eta >0 QYE: component Y of the Q vector using tracks with eta >0 QXW: component X of the Q vector using tracks with eta <0 QYW: component Y of the Q vector using tracks with eta <0

EPE: event plane using using tracks with eta>0, before recentering

EPW: event plane using using tracks with eta>0, before recentering

Candidates: number of pairs K-pi

EventPlane: not filled

The following are filled for each candidate

PtD0: transverse momentum of D0 candidate

PD0: momentum of D0 candidate **MassD0**: mass of D0 candidate

EtaD0: pseudo-rapidity of D0 candidate

RapD0: rapidity of D0 candidate

AziD0: azimuthal angle of d0 candidate

PtKaon: transverse momentum of kaon daughter **PtPion**: transverse momentum of pion daughter

PKaon: momentum of kaon daughter **PPion**: momentum of pion daughter **ChargeKaon**: charge of kaon daughter **ChargePion**: charge of pion daughter

SiKaon: number of silicon hits for kaon daughter **SiPion**: number of silicon hits for pion daughter

dEdxKaon: dEdx of kaon daughter **dEdxPion**: dEdx of pion daughter

ndEdxKaon : ndEdx of kaon daughter
ndEdxPion : ndEdx of pion daughter

dcaXYKaon: distance of closest approach to primary

dcaXYPion: distance of closest approach to primary v

dcaZKaon: distance of closest approach to primary vel **dcaZPion**: distance of closest approach to primary vel

PhiKaon: azimuthal angle of kaon daughter

PhiPion: azimuthal angle of pion daughter

SigmaDcaXYKaon: error of DCA in transverse direc

SigmaDcaXYPion :error of DCA in transverse direction

DcaTrackTXY: distance between daughter tracks at t

DcaTrackTZ: distance between daughter tracks at the

slength : signed decay length

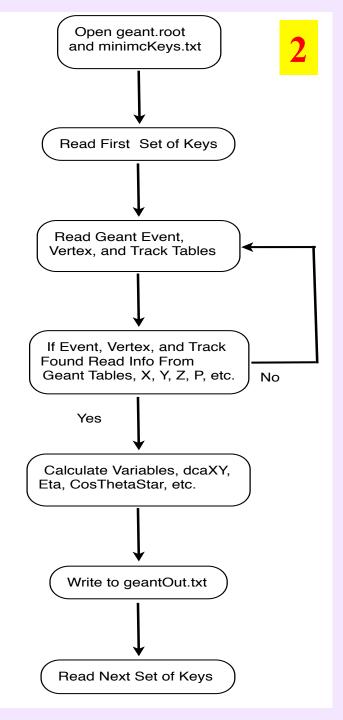
dslength: error of signed decay length

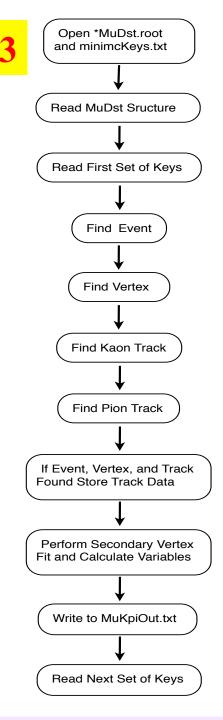
probability: probability of fit

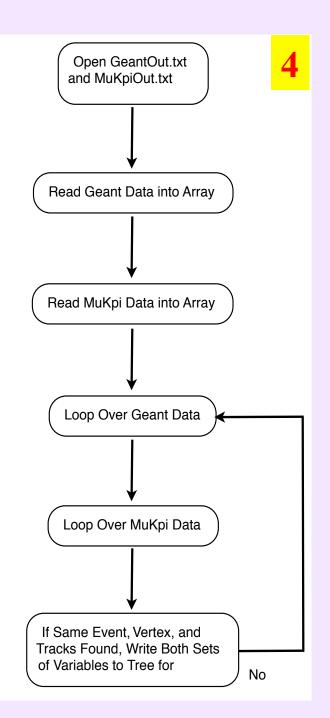
CosPointing: angle beteew the line joining the primary vertex and se

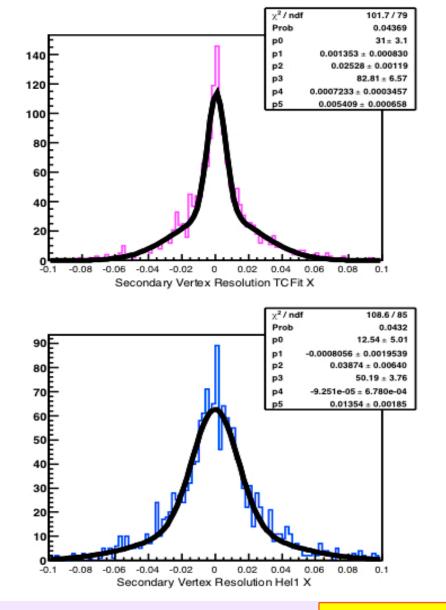
thetaGJ: angle of kaon daughter with the D0 momentum in D0 frame

kLen0: signed length of kaon daughter to secondary vertex (from TC


kLen1: signed length of pion daughter to secondary vertex (from TCl


dkLen0: error of signed length of kaon daughter to secondary vertex


dkLen1: error of signed length of pion daughter to secondary vertex (


Output of user/fit code

Summary

- Streamlining the Evaluation/Analysis structure is a big advantage
- It can be simple augmentation of current structures
- It can be more (replace VO-finder with Kalman in BFC)
- Need to prepare a comprehensive proposal of modifications/streamlining Evaluation/Analysis:
 - In consultation with Software-Infra group
 - Circulate in group for feedback
 - Yifei, Jan, Jonathan and I can start on this