

SSD Alignment Issues

and a few comments from GvN about the IST

Jim Thomas

Lawrence Berkeley National Laboratory 5/17/2012

The IST

- Who:
 - Bob Soja has expressed interest, probably combination of him and GvN will do the survey
- What:
 - Targets will be the 4 corners of the active area of each module
 - Mounts on MSC need to be surveyed at LBL
- When:
 - Winter 2013
- Where:
 - In the clean room
- Why:
 - Survey will give position of silicon sensor active area with respect to the mounting points provided on the MSC
- How:
 - Optical survey machine at BNL (already exists)
- Schedule:
 - expect to be able to survey 2 staves per day, so 14 days for mounted staves plus spares

The SSD

- Who:
 - Bob Connors is the expert. Joe Silber. Howard Matis has done good work but now we are looking for new legs on this project.
- What:
 - Multiple targets on each Si module, measure relative to pin on end
 - Mounts on OSC need to be surveyed at LBL
- When:
 - Fall & Winter 2013
- Where:
 - LBL shops
- Why:
 - Survey will give position of silicon sensor with respect to the mount points on the OSC
- How:
 - Optical survey machine at LBL (already exists)
- Schedule:
 - expect to be able to survey 2 ladders per day, so approximately two weeks to do all 20 ladders

- The SSD ladders were previously surveyed
- Data were recorded as delta offsets from a theoretical model
 - The "model" has recently been located in the archives
- Ladders were found to have a curvature in (local) Z direction
 - it was assumed that this is permanent feature (not gravity)
- It is not clear that we have all of this information available today
 - The good news is that new things turn up every day
 - however, existing databases for the SSD/SVT in the STAR code include the sum of many effects and do not preserve the primary records on how the total sum was achieved
- Even if we had complete records, it is worthwhile to check the previous results ... looking for errors or changes that might coincide with the installation of the new electronics

The Theoretical Geometry Model

- Two "single" star targets, one on each end
 - visible on front and back
- Fourteen "double star" targets, seven on each side
- Jim Thomas LBL visible only from the front side

What do we know?

STAR-SSD sensor geometrical specification,

according to documents used to order the sensors and measurements.

J.Baudot 2012/04/02, updated 2012/04/20

Detail on Module structure

Coordinate system parallel to the detector edges

Precision needed from the survey camera

STAR HFT

- The SSD is built from 4 cm long strips
 - 95 μ m pitch
- Double sided
 - Opposite sides crossed at an angle of 35 mR
- Intrinsic resolution of the detector
 - 30 μ m in r-Phi direction
 - 800 μ m in Z direction
- It would be nice to match the r-Phi resolution of the detector but, frankly, this is not necessary
 - Proper functioning of the HFT system requires ~200 μm resolution at the SSD
- Therefore, heroics are not required. We will take whatever comes for "free" on the survey machine
 - **30 50** μm (???)
 - (Spiros says we can do 10 $\mu m,$ offline, with tracks)

Pictures

Target on end of wafer (backside)

Targets on edges of wafer (front)

9

New Ladder 0 survey (courtesy of H. Matis)

Ladder 0 has a built in curvature in Z, probably permanent, due to construction techniques ... to be checked!

Philosophy: start from the module and work outwards

- Measure location of strips relative to targets (one wafer)
- Measure location of targets on wafers relative to pin (all)
- Repeat for all ladders
- Check gravity sag on one ladder (this can be done on Zeiss)
 - Assume that 0° and 90° are sufficient to characterize sag
 - Repeat 90° measurement on all ladders if necessary
- Record and manage data
- Design, glue, and survey location of mounts on OSC
- Develop mathematical transforms from strip to target to pin to OSC mount to STAR Global Coordinate system
- Record and store in STAR qualified DB

The Lorentz Force affects the SSD

- Lorentz effect :
 - Trajectory of electrons/holes are modified due to the combination of the STAR magnet B-field and the SSD wafer E-field (vxB)

- Observation from data :
 - Shift in <z> direction of the order of 200 μm depending on the B-field orientation.
 - Oops. Not all shifts explained by sign and Mag of B. (?)
 - Jonathan Bouchet

Lorentz Effect Corrections ... already in code STAR HFT

- Values from CMS
 - $\theta_L = 21^\circ$ for electrons and $\theta_L = 8^\circ$ for holes
 - T =280 K and V_{bias} = 40 V http://arxiv.org/pdf/physics/0204078v2.pdf
- Normalized to STAR B-Field

 $tan(\theta_L^{STAR}) = \arctan(\tan(\theta_L^{CMS}) \times \frac{B^{STAR}}{RCMS}) \qquad \qquad \theta_e = 4.4 \circ \theta_e = 1.6 \circ \theta_e =$

$$\Delta(x) = \tan(\theta_L^{STAR}) \times d \qquad \qquad \Delta x = 12 \ \mu m \text{ for electrons} \\ \Delta x = 4.2 \ \mu m \text{ for holes}$$

d = drift distance along the E-field (d =150 microns , half-thickness of the wafer)

Thus the anode and cathode strips will experience different distortions on the two sides of the detector. When reconstructed, this leads to a distortion in the Z direction approximately equal to $\tan(\theta_e - \theta_h)^* d / \tan(\theta_{ac})$ or about 210 µm.

Jonathan Bouchet

- A prior survey for the SSD was done in 2001
- Much of this information has been recovered, but not all
- LBL has a seemingly easy to use survey machine
- We propose to resurvey all of the ladders
- Targets are available on both sides of each wafer
- A well defined reference point exists on each ladder
- Preliminary data has already been collected
- Some software already exists from the last time the SSD was used in STAR
 - As with all archeology projects, a curse as well as a blessing

Backup Slides

The SSD

