IST report, plans and schedule

Sensors Readout chips Wire bonding Hybrid/cable Readout systems Mechanical support Cooling system Short Term Schedules

> HFT bi-monthly meeting LBNL, May 11, 2010 Gerrit van Nieuwenhuizen

Slide 1

Sensors

Slide 2

APV25-S1 readout chips

- 8 wafers procured = enuf chips
- 1 wafer diced (5-10 working days)
- 6 chips mounted, chips work but I2C is not working, so very useful for tests

- 2 x 16 chips mounted on 2, more than fullscale, prototypes
- 1 prototype partially bonded

Testing still hampered by reluctant readout system

I'd like to wait with further dicing until more test result are available

Wire bonding

Bonding of prototypes is taking place at BNL

Production bonding will take place at BNL

- needs to be scheduled carefully
- will be supervised by Don Pinelli
- we will supply a person to do the bonding

1 IST prototype was partially bonded (¼) in a few hours with 25 mil wire

25 mil is too thick and current tools are too wide to comfortably bond the APV chip

New tools and wire are available but using them was delayed by recalibrating machine

Don Pinelli will bond 1 full prototype this week

Kapton hybrids

Prototype Production IST module						
	10.2 cm	400um		<u>a</u>	m100	
2	The real	dout chips are W x R :	7100um x 8055ur			
Mostly scaled from	the Miro FY08 ReD pr	ototype		1ST_Hodule_TopView_ Latest Revision: 07 Scale: 1cm = 0.8cm	<u>.16Ju12008</u> /17/2008	

2008

Radiation Length estimate for	IST module						
1.27mm 4.0 cm Billion Pad Bensor Sillion Fad Bensor CF Honeycomb with CF Skins	25-m OC Substrate						
Kapton Hybrid-Cable folded to backside of ladder							
Bilicon Sensor: 300um = 0.32%Xo APV25-51: 6055um X 7100um Silicon, 300um = 0.32%Xo Kapton (polyamide), Radian=28 6cm, 2 X 255um = 0.17%Xo Cu traces 1 Jum(Cu-lance 2) Super 8 565 courses = 0.12%Yo	Averaged RadLen over 5.3cm width is about <mark>1.2%Xo</mark>						
Carbon-Carbon, BadLane22.0cm, 0.5mm = 0.25Mo Carbon Fiber KKin 10milyigibe = 500mm = 0.11Mo Ultracore Honeycomb 0.4555cm = 0.06M2o Al Cooling table 00 4.10mm ID 3.50mm =4Xo Maler. 00 3.50mm =4Xo	0.049% Readout Chip 0.060% CF Honeycomb 0.12% CT Traces Hybrid 0.11% CF Skin + Glue 0.11% CF Skin + Glue 0.23% Carbon-Carbon core						
(OR AI Cooling tube OD 3.00mm ID 2.60mm =4No) (Fluorinert C5F12, OD 2.60mm =4No) Silicon: 2.33cr/cm3 Endten=0.36cm	0.24% Silicon Sensor 0.05% Cooling Water 0.08% Al Cooling Tube ¥0.17% Kapton						
Water: 1gr/cm3_RadLen=36_08cm	I cooling tube adds 0.13% Xo						
Mater agr/ans, Rathenso.veam							
Carbon Fiber: 1.1307/cm3. Radien=28cm							
Aluminum (Pure): 2.70gr/cm3, RadLen=8.897cm	IST_Module_SideView_22Apr2008						
Copper (Pure): 8.96gr/cm3, RadLen=1.43cm	Latest Revision: 05/13/2008						
	Scale: 1cm = 0.3cm						

2009

Shorter sensors → shorter hybrids 12 chips → less dissipation (~ 4 Watt) → better matched to readout Shorter flex cables

Ben Buck and I will sit together tomorrow for the redesign, Gerard will check too

Production expected in July 2010

Test readout system

Using Ben Buck's new firmware which works with Ben's slow LabView program

FPGA_CU had to be replaced because I blew it up

Currently using a DaqMxBase C program to talk to readout system, handshaking seems to be working but no data readout (although visible at APV level) plus some other mysteries We'll check again against Ben's setup tomorrow

Slide 6

Production readout system

Grounding scheme determined First prototypes of ARM/ARC system ready May/June 2010.

Slide 7

Test pre-prototype readout system

Prototype readout tested with long cable by Gerard Visser

Slide 8

Mechanical support system

50 cm IST in SolidWorks Clamping 'Crown' rapid prototype Produce 50 cm ladder in August

Gerrit van Nieuwenhuizen

Slide 9

Cooling system

Squashed cooling tubes 3 different length kapton hybrid/cables Supports for connectors

FloWorks shows a rise from 21C to 32C for the APV chips (Novec 7200 at 0.5 liter/minute, 1 cooling tube)

Slide 10

IST cable transitions

1 2 3 4 5 6 7 8 9 10cm 11 12 13 14 15 16 17 18 19 20cm 21 22 23 24 25 26 27 28 29 30cm 31 32 33 34 35 36 37 38 39 40cm 41 42 43 44 45 46 47 48 49 50cm 51 52 53 1cm = 1.00cm

Specially designed copper cable (~16kg/m)

Slide 11

Schedules

Shortterm we are on track as long as the funding arrives as expected (what is holding up the bridge funding?)

Slide 12

Concluding remarks

Sensor design will be finished before June RFQ will go out to Hamatsu, June-July Prototype production in Q1 FY2011

Waiting with dicing of more APV chips until test results are available

Wire bonding being set up at BNL First full prototype bonding finished this week

Hybrid designs are being vetted Shortened design finished before July Prototype production July-August

Still smoothing out problems with test readout system First prototypes of ARM/ARC in May/June

Mechanical engineering rebooting Shorter design implemented + extra supports Cooling calculations ongoing (2 vs 1 tube)