DO analysis in HFT era with (μ Vertex) code

BNL: Y. Fisyak, V. Perevoztchikov [A. Kisel (guest)] **Kent**: J. Bouchet, J. Joseph, S. Margetis, J. Vanfossen

LBL May 12, 2010

OUTLINE

- Why micro-Vertexing?
- What is it? How is it implemented?
- Recent work
- What is next?

Why micro-Vertexing?

Very short lived particles

• For a realistic D⁰ distribution at mid-rapidity (pT > 1 GeV/c) the average decay length is 60-70 microns

- Hard (fixed value) cuts are not optimal
 - Need to use momentum depended/correlated cuts otherwise one strongly biases result
 - One example is pointing (DCA) resolution
- Pointing (DCA) info is at least as important in $\mu \text{Vertexing}$ as dE/dx to PID people !!

- Need to use full track info
 - Full covariance/error matrix
- Need to have track info inside beam pipe
 - So that helix hypothesis is exact solution
 - So that error matrix is optimal w/out new-material terms
- This should be the way to do this analysis; it is in HEP
- This should be the way of the (HFT) future

One other important step in the multi-dimensional analysis of cut variables as done, e.g. by XM Sun and Yifei

What is it? How is it implemented?

- TRACKING ('OLD')
 - Find Global Tracks -> Save info @ first measured hit
 - Find Vertex
 - Fit/Find Primary Tracks
- TRACKING ('NEW')
 - Find Global Tracks
 - Move them through all material to beam pipe center (x,y)=(0,0)
 - Save FULL track/error info -> DcaGeometry
 - Use THIS for secondary vertex searches
- This info is in MuDst starting with Run-7 Au+Au data
 - For optimal silicon analysis
 - We can always retrofit Cu+Cu

DcaGeometry

7

DcaGeometry

- P_T grows as we move backwards
- Errors/cov-terms change too
- No-huge but finite effect

Caution: dEdx introduces x-talk

Pure D0(Monte Carlo sample)

- Previous studies showed that abs(cos-theta*)<0.6 cuts most background
- It also avoids kinematical edges (soft kaon/pion)

Secondary vertex fit methods used

- **1.** Linear fit → abandoned.
- Helix swimming to DCA of the two track helices (V0-like) using the global track parameters to reconstruct helices (StPhysicalHelix) → not saved .
- **3.** Helix swimming to DCA of the two track helices (V0-like) using the parameters from StDcaGeometry : save full track information (covariance matrix) inside the vacuum (center of beam pipe).
- 4. **Full D0/Helix Fit (TCFIT)** with vertex constraint and full errors
 - 1. Also a full Kalman D0-fit was tried but not significant gains in time etc
 - 2. The combined info from points 3, 4 will allow momentum dependent cut using the full track information.
 - Least square fit of the decay vertex. In 2 body decay, combination of 2 tracks + addition of constraint(s) to impose 'external knowledge' of a physic process and therefore force the fit to conform to physical principles.
 - 4. The Kalman fitter machinery allows the knowledge with high precision of tracks near the primary vertex (by taking into account the MCS due to the silicon layers).

Long-ctau D⁰ evaluation

Each plot shows • the correlation of the secondary vertex position from GEANT (yaxis) with 1 of the 3 methods the 3 methods investigated : TCFIT,global helix and DCA geometry helix (x-axis) for its 3 components.

J.Vanfossen

'normal' $c\tau D^0$ evaluation

•**TCFit** does a bit <u>better job</u> than either helix swimming method.

•The scatter along the x axis of the swimming methods can be attributed to low pt D⁰'s and daughter tracks that are close to being parallel or anti parallel.

J.Vanfossen

J.Vanfossen

Real Data

- Run over run 7 data productionMinBias.
 - Sample is ~35 Million events/ ~55 vertices
- QA plots done day by day :
 - <u>http://drupal.star.bnl.gov/STAR/blog/bouchet/2010/</u> feb/24/full-production-minbias-run7
- Cuts (see next slide) chosen to speed the code.

Cuts used (real data)

- triggerId : 200001, 200003, 200013
- Primary vertex position along the beam axis : |zvertex| < 10 cm
- Resolution of the primary vertex position along the beam axis: |σ_{zvertex}|<
 200μm
- TRACKS level

FVFNT level

- Number of hits in the vertex detectors :SiliconHits>2 (tracks with sufficient DCA resolution)
- Momentum of tracks p >.5GeV/c
- Number of fitted TPC hits > 20
- Pseudo-rapidity : |η|<1 (SSD acceptance)
- dEdxTrackLength>40 cm
- DCA to Primary vertex (transverse) DCA_{xv}< .1 cm
- DECAY FIT level
 - Probability of fit >0.1 && |sLength |<.1cm</p>
 - Particle identification : ndEdx : $|n\sigma_{\kappa}| < 2$, $|n\sigma_{\pi}| < 2$

D⁰ signal in 2007 Production mbias

Cuts(offline):

- 50µm< decaylength<400µm
- trackDca<200 μm
- dcaD0toPV<300µm
- p_T^{kaon}>0.7GeV/c
- p_T^{pion}>0.7GeV/c
- Plot as a function of gRefMult

50<gRefMult

19

Outlook

- D0-vertex code has been used in data analysis and it is debugged
- Can be used to analyze HFT data (see next talk)
- The use of Kalman vertex fitter has the advantage of easy upgrade to more than 2 daughter particles.
- Cut-set selection, optimization and apple-2-apple comparisons is next

Back-up

Constrained vertex fit

 $\chi^2 = \sum (y_{i0} - y_i(x^*))^T V^{-1}(y_{i0} - y_i(x^*)) + F$

where :

- x* : secondary vertex position
- y_{i0} : track parameter of the original fit
- y : track parameter after refit with knowledge of the secondary vertex
- V : covariance matrix of the track parameter
- i : sum over tracks
- F : constraint $\propto f\lambda$
- f : physical process to satisfy

•The constraint(s) is(are) added to the total χ^2 via Lagrange multiplier λ

•The minimum of χ^2 is then calculated with respect to the fit parameters **x** and with respect to λ because the condition $\partial \chi^2 / \partial \lambda = 0$ required for the minimum correspond the the constraint equation f