Reconstruction of D_s with HFT

Gang Wang (UCLA)

Data sets

- UPGR15 configuration
- One case: thin pixel layers
- 10k events for each case with |Vz| < 5 cm
- 10 D_s⁺ per event (flat pT)
- 30 D_s⁺ per event (power-law pT)
- 3-body decay via φ : k⁺ + k⁻ + pi⁺ (BR 2.32% or 5.5%)
- Decay daughter: $p_T > 0.2 \text{ GeV/c}$, |Eta| < 0.9
- Only the two pixel layers are used
- Assuming ideal PID for decay daughters

Effective cuts

Significance

Below 3 GeV/c, the simulation production with power-law.

Above 3 GeV/c, flat pT.

Below 4 GeV/c, cut on the inv mass of K pair, and BR is 2.32%.

Above 4 GeV/c, no requirement on the inv mass of K pair, and BR is 5.5%.

Outlook

With TOF info for Kaons, the K pair efficiency is around 50%. So the realisitc significnace should be reduced to 70% of what I show.