HFT Simulation – Answers to CD-1 review questions

Charm and bottom cross section with HFT

How does HFT thickness affect physics observables?

Soft Hadron Meeting, 07 Dec, 2009

$D^0 p_T$ spectrum and charm cross section

 $D^0 \rightarrow e$ spectrum uncertainty

Form factor decay:

 $D^0 p_T$ distributions with 1- σ uncertainty (Previous slide).

 $D^0 \rightarrow e p_T$ shape uncertainty estimated for 500M Au+Au minbias events.

$B \rightarrow e$ spectrum uncertainty

Bottom cross section obtained from FONLL fit to $B \rightarrow e$: Sys. errors from D meson p_T shape are propagate to the $B \rightarrow e$ spectrum. Grey band is the sys. error for 500M 200 GeV Au+Au minbias. Yellow band is the sys. error for 50M 200 GeV Au+Au central 0-10%.

Charm and bottom cross section

D⁰ significance vs PXL thickness

Yifei Zhang LBNL

$D^0 v_2$ vs PXL thickness

The effect of thickness change is dominant at low p_T . Low p_T hydro region, larger errors with Cu cables or double thicker PXL. No effect on R_{CP} , R_{AA} (high p_T)

Summary

> Errors for charm and bottom cross section are estimated. The D⁰ p_T shape uncertainties are propagated to B \rightarrow e and the systematic errors of bottom cross section.

The effect of PXL thickness change is dominant at low p_T , which affects the statistic errors for D⁰ v₂ in the hydro region. The thicker (copper) configuration may not suitable to quantitatively study models.

To do:

Optimize low p_T cuts (versus p_T). Redo all the physics plots and error estimates with a set of best cuts.