Lc reconstruction new production: -higher statistics -thick geometry

Jan Kapitán (NPI ASCR Prague)

TC meeting, March 2010

Jan Kapitán

CDR – final result

thin geometry: -pixel 0.32% X0 -ist 1.32% X0 -beampipe 0.076cm

CDR production: -10k events -5 Lc in each

how to read the errors: difference from the other CURVE not the datapoints!!

Jan Kapitán

new production: thin

10k events, 30 Lc in each : merged with CDR production to increase statistics

3

Jan Kapitán

improvement for 3-4, 4-5 GeV pt bins: PID of daughter particle requirement ("GoodPID") not used for peripheral collisions!

+thorough cut optimisation performed: globalDCA * cos (theta) * nsigma_decayVerte x: total ~3000 cut values tried for each pt bin * centrality

except... (skip to next slide for thick:-)

why is the result for 2-3 GeV pt bin so much worse, despite better cut optimisation?

well, one generally obtains significance as: significance +- error

for tight cuts that we have to use, sometimes error is not negligible and then one has to decide, what is more (for example): 10 + 5 or 8 + 1

```
I chose to optimise the "lower estimate" : mean – error : in this case 10+-5 gives 10-5 = 5, 8+-1 gives 8-1 = 7 this is also what is finally used for the plots (!): I believe it's fair...
```

for 2-3 GeV pt bin, central collisions, we had significance: CDR: 8.2 + 4.2, mean-error = 4.0 new: 3.1 + 0.8, mean-error = 2.3 merged: 3.4 + 0.7, mean-error = 2.7

->now I plot significance 2.7 as opposed to 4.0, but the actual numbers ARE statistically compatible...
Jan Kapitán
4
TC - BNL Mar2010

new production: thick

thick geometry: -pixel 0.64% X0 -ist 2.64% X0 -beampipe 0.076cm

errors are factor 1.5 to 2 bigger than for thin geometry!!

fitting pt shape of background may help at high pt: not done here yet!

Jan Kapitán

new production allowed to obtain significance with better precision

cut optimization and better track selection (PID not required for peripheral events) improved "thin" significance for 3-4, 4-5 GeV pt bins compared to CDR

errors for thick geometry factor 1.5 to 2 bigger than thin: pointing resolution penalty clearly seen...

Lc reconstruction with thick detector in 2-3 GeV pt bin seems quite challenging