HFT Simulation Update

 \succ Low p_T cut optimization

Physics plots update

D⁰ from recent production with improved statistics

HFT TC Meeting, March 9-10, 2010

3D scan

1) 6 p_T bins: 0-0.5, 0.5-1.0, 1.0-1.5, 1.5-2.0, 2.0-2.5, 2.5-3.0

2) $\cos(\theta)$ cut: scan range 0.2 - 0.9 (step=0.05), 0.9-1.0 (step=0.01).

3) DCA to primary vertex cut: scan range $30 - 300\mu m$ (step= $10\mu m$).

4) DCA to V0 cut: scan range 30 - $100\mu m$ (step= $10\mu m$).

Signal and Background are scaled to real numbers.

Significance is defined as S/sqrt(S+B).

3D scan code is done for study significance vs cuts. The running process is also very fast (compare to fastsimu), but the number of jobs are huge (each set of cuts goes to one computing job).

Focus on low p_T , but still have space to improve at high p_T .

Significance vs p_T

Gain a factor of 2 by applying best cuts for both thin and thick PXL compared to CDR.

The maximum significance with thick PXL is about a factor of 2 smaller than with thin PXL at low p_T .

$D^0 v_2$

Charged hadron v₂, Phys. Rev. C 77 (2008) 54901

Vith best cuts, significance enhanced a factor of 2 => reduce v_2 errors. Compare to charged hadron v_2 , suppose to be decreasing at high p_T . The effect of thickness change is dominant at low p_T . Low p_T hydro region, larger errors with Cu cables or double thicker PXL.

Charm and bottom cross section

Summary

> Optimized low p_T cuts (versus p_T). The significance was found to be a factor of 2 higher than CDR for both thin and thick PXL.

Greatly reduced errors for physics plots.

Recent production with improved statistics

Recent production with improved statistics

