Monte Carlo Simulation for the Heavy Flavor Tracker at STAR

Xin Dong

Lawrence Berkeley National Lab

- Motivation
- MC results & Discussion
 - Results up to proposal
 - Improvements
 - Pile-up effect in PIXEL
- Summary and To do

Motivation

Understand the HFT performance in the STAR tracking (ITTF) environment

- ➤tracking (matching) efficiency
- ➢ghosting hits/tracks
- ➢pointing resolution & its impact on charm hadron secondary decay vertex
- >charm hadron reconstruction efficiency & signal / background estimation
- ➢performance under RHICII luminosity (pile-up effect on PIXELs)
- ➢performance in small systems (p+p)

At RHICII luminosity, the total piled-up hit density in Pixel detectors in p+p collisions is approximately equivalent to that in central Au-Au collisions

We will focus on the simulation in central Au-Au collisions.

Monte Carlo Simulation Strategy

Geometry definition in simulation

Hit position in silicon layers from MC

Segment sizes and resolutions all numbers are in microns

	Dimension	σ _{rφ} χσ _z
	(r	
SSD	95 x 4200	30 x 699
IST2-B	60 x 4000	17 x 1100
IST2-A	4000 x 60	1100 x 17
IST1	60 x 2000	17 x 550
PXL2	30 x 30	8.7 x 8.7 *
PXL1	30 x 30	8.7 x 8.7 *

* errors for tracking are different

Dec. 17-18th, 2007, HFT Meeting, Berkeley

X. Dong / LBNL

Event Samples and Some definitions

Central (b=0-3 fm) Au-Au Hijing + 10 D⁰ per event (flat p_T , eta) |Vertex_z|< 15 cm

Pointing resolution	<u>):</u>
Ghosting hit:	the hit picked up in this track is not the real MC hit
Ghosting track:	the track reconstructed doesn't have an associated MC track
Track efficiency:	possibility of reconstructing a MC track
	(including geometric acceptance and track quality cut eff)
<u>D⁰ efficiency:</u>	possibility of reconstructing a MC D ⁰
	(including acceptance and track quality cut eff for daughters and other pair quality cuts for D ^o candidates)
Background:	not from D ^o , hijing tracks.
D ^o signal:	a good reconstructed D ^o with both daughters have the correct associated MC tracks (no mis-PID for daughters)
D ^o background:	either of the rec. daughter is not from a MC daughter of MC D ^o

No mis-PID

<u>mis-PID</u>

neither of daughters is from D0 either is not from D0, the other is from bg two daughters are from different D0 neither is from D0, and both mis-Ided either is from D0, but mis-Ided, the other is from bg two daughters are from different D0, and mis-Ided both daughters are from the same D0, but both mis-Ided

Pointing Resolution

From all hits to primary vertex

Primary vertex resolution

The vertex resolution nicely follows $a \oplus \frac{1}{N}$

Single Track Efficiency

Au + Au central collisions @ 200 GeV

TPC tracking efficiency ~80-85%
Good Efficiency = 1 – Ghosting rate

D⁰ reconstruction

Secondary Vertex Resolution

D^o invariant mass plot from MC sample

D⁰ efficiency

Kinematic cuts may be optimized after systematic studies.

11111

BERKELEY

D^o signal / background

Improvements

Dº Measurements:	dN/dy per NN collision ~ 0.004 (STAR) we take half of it as the estimation
# Hits selection in F	PIXEL: MC hits and Rec hits can be > 2 we include those tracks
<u>D^o Background:</u>	K from D and pi from others important in high p_T 0° -> K ⁻ + X (53%), as well as kaon from other charm hadrons.

Update version

PID with TOF:

Assume perfect K/pi at p_T <1.5 GeV/c, no PID for K/pi beyond that. Background estimation also includes PID contamination.

Improvement on Efficiency

15

Improved understanding of D⁰ signal / background

v₂ sensitivity

Pile-up in PIXEL

One central Au+Au event + pile-up at 1x RHICII luminosity level in PIXEL

Beam diamond sigma = 15 cm minibias collision rate = 80 kHz PIXEL chip integration time = 200 us					
<u>Pile-up hit density (cm⁻²)</u>					
Pile-	up level	PIXEL1	PIXEL2		
0.5x		21	3		
1.x		43	6		
2.x		86	12		
3.x		129	18		
AuA	u central	19	2.4		

Ghosting increases!

D^o signal / background @ RHIC II luminosity

Slightly decrease in the S/B ratio!

X. Dong / LBNL

S,B evolution with different pileup levels

Expected invariant mass distributions

 p_{τ} distributions for S/B at high p_{τ} are just guesses.

 D^{0} Background slope at high p_{τ} could be uncertain due to limited statistics in MC

Could be better at high p_{τ} !

D⁰ simulation in p+p collisions

- A first estimation on the D^o efficiency in p+p collisions
- PYTHIA charm events only + GEANT simulation, no QCD background simulation yet

Statistical error on R_{AA}

P _T (GeV/c)	$\Delta p_{\rm T}$ (GeV/c)	R _{AA} relative error (%)
4.5	1.0	1.0
5.5	1.0	1.8
6.5	1.0	2.8
7.5	1.0	4.3
8.5	1.0	6.4
9.5	1.0	9.3

- 1.0 pb⁻¹ analyzed data in $|v_z|$ <15cm
- error in central AuAu neglected
- Background not included yet

Summary

A full Monte Carlo simulation + reconstruction chain with HFT in STAR has been set up.
 With the HFT at STAR, we are able to achieve: ✓ primary vertex resolution better than 10 um. ✓ D⁰ secondary vertex well separated from primary vertex (not very low p_T).
 comprehensive precision measurements on open charm hadrons because of High efficiency High S/B High S/sqrt(S+B) in future RHIC II environment.

Unsolved questions:

- ≻tracking algorithm well understood or not?
 >ghosting rate at low p_⊤
- >Improvement on the D⁰ efficiency at low p_T?
- ≻p+p pile-up and vertex finders

To do

Optimize the ITTF tracking algorithm and HFT simulation package

➤Fully understand the single track efficiency / pointing resolution

≻Optimize D^o analysis cuts

➢Systematic D⁰ background study

➢other charm hadrons

≻p+p collisions

