Alignment Update

HFT Alignment studies

- Review done
- We now have a fully functioning alignment environment, including the PXL, IST and SSD detectors based on older SVT/SSD work
 - a TPC tO-like bug still persists. Geometries used for MC generation and track reconstruction are not consistent
 - Yuri suggested the direct use of root geometry matrices. Eliminate going back/forth to tables step
 - We plan to use the chain for Run-13 alignment
- Need to establish a VMC application for detailed studies/debugging
- Need to change the starting point from ideal to surveyed geometry
 - one of the goals of the engineering run

Test Results

FIXED ALL+Vertex- MEDIUM STATS

dX mkm	dY mkm dZ mkm		alpha mrad beta mrad		gamma mrad	Comment	
_		_					
57.27+-23.28	-1.21+- 1.01	-36.58+-30.43	-0.00+- 0.01	-0.04+- 0.05	0.04+- 0.04	Average for PXL S	ector 1
3.83+- 2.65	-1.41+- 1.85	61.27+-28.01	0.06+- 0.04	-0.03+- 0.05	0.01+- 0.04	Average for PXL S	ector 2
-1.03+- 0.72	2.31+- 2.20	54.55+-28.16	-0.05+- 0.02	0.02+- 0.01	0.01+- 0.08	Average for PXL S	ector 3
3.24+- 0.71	6.10+- 2.96	23.03+-27.66	0.03+- 0.02	0.01+- 0.01	-0.15+- 0.15	Average for PXL S	ector 4
-1.39+- 2.31	-2.23+- 1.51	6.69+-26.02	0.00+- 0.02	-0.03+- 0.04	-0.13+- 0.07	Average for PXL S	ector 5
1.71+-23.40	-0.07+- 0.92	-12.20+-30.05	-0.00+- 0.01	0.02+- 0.05	-0.08+- 0.04	Average for PXL S	ector 6
		22.60+-29.45		0.02+- 0.05	0.04+- 0.04	Average for PXL S	ector 7
-0.36+- 0.65	-0.95+- 2.21	52.58+-33.04	0.04+- 0.02	-0.00+- 0.01	0.03+- 0.08	Average for PXL S	ector 8
	3.85+- 2.84	6.80+-29.28	0.01+- 0.02	-0.01+- 0.01	-0.02+- 0.15	Average for PXL S	ector 9
-0.24+- 2.56			-0.00+- 0.03	0.04+- 0.05	0.07+- 0.08	Average for PXL S	ector 10
	-3.70+- 0.84	18.69+-12.02	-0.01+- 0.01	0.01+- 0.01	0.03+- 0.02	Average for PXL -	Shell 1
2.56+- 0.56	-1.70+- 0.82	14.95+-12.59	-0.01+- 0.01	-0.00+- 0.01	-0.07+- 0.02	Average for PXL -	Shell 2
3.42+- 0.39	-1.94+- 0.53	15.57+- 8.72	-0.01+- 0.00	0.01+- 0.00	-0.03+- 0.01	Average for All	PXL
-9.34+- 1.24	6.95+- 1.27	11.47+- 9.85	-0.01+- 0.00	-0.00+- 0.00	-0.00+- 0.01	Average for All I	st
-5.90+- 1.16	5.65+- 1.24	3.47+- 7.88	-0.00+- 0.00	0.00+- 0.00	-0.02+- 0.01	Average for All S	sd

• Statistics matter (up to a point)

• Averages come from several histo fits

Test Results

SHIFTED SSD (some ladders) – MEDIUM STATS

dX mkm	dX mkm dY mkm d		alpha mrad	beta mrad	gamma mrad	Comment	
31.18+-37.04	-0.96+- 1.27	-25.11+-42.73	-0.00+- 0.01	-0.11+- 0.11	-0.04+- 0.06	Average for PXL S	ector 1
8.47+- 2.04	-1.49+- 2.97	89.95+-44.84	-0.37+- 0.11	0.26+- 0.11	0.04+- 0.05	Average for PXL S	jector 2
-2.81+- 0.92	11.56+- 3.13	114.36+-43.79	-0.14+- 0.03	0.10+- 0.03	-0.10+- 0.11	Average for PXL S	jector 3
1.87+- 0.72	7.04+- 3.09	-14.97+-45.15	0.01+- 0.02	-0.12+- 0.03	-0.06+- 0.20	Average for PXL S	jector 4
2.95+- 4.01	14.88+- 2.27	-36.74+-39.06	0.03+- 0.06	0.47+- 0.26	-0.06+- 0.10	Average for PXL S	jector 5
17.18+-36.09	2.69+- 1.41	10.13+-43.33	0.00+- 0.01	-0.09+- 0.10	-0.05+- 0.07	Average for PXL S	jector 6
	\triangleright	65.38+-46.00	1	0.54+- 0.15	-0.01+- 0.06	Average for PXL S	jector 7
-2.08+- 0.96	4.23+- 2.99	-27.47+-46.58	0.03+- 0.03	0.14+- 0.04	-0.11+- 0.13	Average for PXL S	jector 8
	7.92+- 3.30	-53.86+-40.89	-0.02+- 0.02	-0.04+- 0.02	-0.06+- 0.17	Average for PXL S	jector 9
2.32+- 4.26			1	-0.29+- 0.21	0.01+- 0.12	Average for PXL S	jector 10
I	-11.07+- 1.34	11.91+-17.68	-0.10+- 0.01	0.00+- 0.01	-0.06+- 0.04	Average for PXL -	Shell 1
1.54+- 0.63	-4.84+- 1.13	24.76+-17.82	-0.03+- 0.01	0.01+- 0.01	-0.02+- 0.04	Average for PXL -	- Shell 2
-0.63+- 0.53	-9.71+- 0.91	19.02+-12.11	-0.06+- 0.01	0.01+- 0.01	-0.05+- 0.01	Average for All	PXL
-4.80+- 1.81	12.82+- 1.72	23.46+-10.86	-0.02+- 0.01	0.00+- 0.01	0.01+- 0.01	Average for All I	st
-4.48+- 1.58	10.67+- 1.54	-619.20+-13.75	-0.01+- 0.00	-0.04+- 0.00	-0.01+- 0.01	Average for All S	isd

- Statistics matter (up to a point)
- Averages come from several histo fits
- Missing points are artifact (see next slides)

Test Results

FIXED – MED STATS

	dX mkm	dY mkm	dZ mkm	alpha mrad	beta mrad	gamma mrad	Comme	nt			
•							ar_institut	ions_ksu_bouchet	_RUNSVT_PXL_	PRODPlotsN	FP25rCut
Ι	0.00+- 0.00	0.00+- 0.00	0.00+- 0.00	0.00+- 0.00	0.00+- 0.00	0.00+-935.77 LS	F/Sum Over	PXL Shell 2			
L	-5.65+-10.65A		1		0.01+- 0.02A	dXv:	sZ_1/dX ver	rsus -z => beta	for PXL Half	2	
L		-37.26+-19.03A	1	-0.09+- 0.01A		dYv:	sZ_1/dY ver	rsus z => alpha	for PXL Hal	.f 2	
L			24.76+-17.82A			dZv:	sZ_1/dZ ver	rsus z for PXL H	alf 2 slope	e = -1.33	+- 0.04
L	1.49+- 0.64A					dX4	dx_1/dX vs	−1+jx*vx	=> dx for	PXL Half 2	
L		-3.07+- 2.41A				dX4	dy_1/dX vs	j×*vy	=> dy for	PXL Half 2	
L		I		-0.18+- 0.06A		dX4	da_1/dX vs	jx*(-vy*z+vz*	y)=> alpha f	or PXL Hali	f 2
L					0.02+- 0.01A	dX4	db_1/dX vs	-z+jx*(vx*z-vz*	x)=> beta (f	or PXL Hali	f 2
L				0.11+- 0.02A		dX4	dg_1/dX vs	_y+jx*(-vx*y+vy*	x)=> alpha f	or PXL Hali	f 2
L	3.06+- 2.96A					dY4	dx_1/dY vs	jy*v×	=> dx for	PXL Half 2	
L		-5.19+- 1.29A				dY4	dy_1/dY vs	_1+jy*vy	=> dy for	PXL Half 2	
L	I			-0.05+- 0.02A		dY4	da_1/dY vs	z+jy*(-vy*z+vz*	y)=> alpha f	or PXL Hal	f 2
I					-0.13+- 0.06A	dY4	db_1/dY vs	jy*(vx*z-vz*	x)=> beta (or PXL Hal	f 2
I	I					-0.02+- 0.04A dY4	dg_1/dY vs	-x+jy*(-vx*y+vy*	×)=> gamma f	or PXL Hal	f 2
I				0.19+- 0.06A		dZ4	da_1/dZ vs	-y+jz*(-vy*z+vz*	y)=> alpha f	or PXL Hal	f 2
I					-0.08+- 0.06A	dZ4	db_1/dZ vs	x+jz*(_vx*z-vy*	x)=> beta (or PXL Hal	f 2
						-0.09+- 0.17A dZ4	dg_1/dZ vs	jz*(-vx*y+vy*	<u>×)</u> => gamma f	or PXL Hal	f 2
	1.54+- 0.63	-4.84+- 1.13	24.76+-17.82	-0.03+- 0.01	0.01+- 0.01	-0.02+- 0.04 Av	erage for F	PXL - Shell 2			

• Averages result from several fits

Test Results

FIXED – MED STATS

dX mkm	dY mkm	dZ mkm al	pha mrad be	ta mrad ga	mma mrad	Comment				
					0	0.00 11 05 (Matai				
nan+- nan	nan+- nan	nan+- 0.00	nan+- nan	nan+- 0.0	ori nan+−	dVuc7 1/d	x and right	part for Leas	t Squre	0 F1t
-35.24+-31.00K	20 22, 20 060		0 0 0 0 0 0 0 0	-0.01+- 0.0	9A	UXVSZ_1/U	X versus -z	=> beta for		·,
	-20.32+-20.90K	1 22 60+-20 454	0.02+- 0.05K			01VSZ_1/0	7 versus 2	for DVL All	FAL AU	0
6 00 - 2 270		22.007-29.45A				UZVSZ_1/U	Z VEISUS Z V vo _1.ivv		dv for	0
0.90+- 3.2/K	-16 05+- 4 670					0X40X_1/0	∧ vs −⊥+jx*v V vs – iv+v	x =>	dy for	
	-10.95+- 4.0/K		 _0 12, 0 000			0X40y_1/0	∧ v5 jx≁v Vuc iv+/	y	alpha	for D
			-0.12+- 0.09K	0 17, 0 1	241	UX408_1/0	∧ vs jx+(Vus ⊐liv+	-vy*2+v2*y)=>	a cpna	for D
			 0 26+ 0 150	0.1/+- 0.1	24	0X400_1/0	∧ vs -z+jx* ∨ vs v+iv*/	(VX*Z-VZ*X)=>	alaba	for P
-3 17+- 3 470			-0.20+- 0.15K			0X409_1/0	∧ vs y+jx+(V vc iv+v	-vx*y+vy*x/=>	dy for	
-3.1/ 7 - 3.4/K	-1 70+- 2 400					0140X_1/0	ivs jy≁v Vuc _1+iu+u	×	dy for	
	-1.757- 2.400		0 01+- 0 050			d14dy_1/d	1 VS -1+jy≁v V vc - 2+jv≁l		aloba	for D
			0.017-0.056	1 _0 05+_ 0 0	0.01	d140a_1/0	⊺vs ∠+jy+(Vve iv+	-vy+2+v2+y)->	heta	for P
				-0.03+- 0.0	0 0/+-	01400_1/0	rvs jy≁ Vuc _v⊥iv≁/	(VX+2-V2+X)->	damma	for D
			-0.22+- 0.20P		0.047-	ld74da 1/d	7 vs _v+iz*(alnha	for P
			0.227- 0.200	0 08+- 0 1	24	dZ40a_1/0	Z vs -y+j2*(7 ve v+iz≠(-vy+2+v2+y)=>	heta	for P
				0.007-0.1	0 13+-	0.7041d74do 1/d	7 vs iz*(-VX*V+VV*X)=>	gamma	for P
		22.60+-29.45		0.02+-0.0	5 0.04+-	0.04 Average	for PXL Sect	or 7	gamia	101 12
		221001-23145		0.021- 0.0	0.04+-	0.04 Average	TOT THE SECT	01 7		

• Averages result from several fits

