Sensor Local System
S. Margetis, KSU

Definitions

STAR Global Coordinates

Wafer Local Coordinates

- Local v (along ladder) is fixed and along global $+z$
- Local w (normal to u-v [wafer] plane). Points away from exposed surface
- Local u (r-phi on wafer plane) varies so it forms a RHS with v-w (u,w,v)

Wafer Local Coordinates Examples

- We use the above RHS notation (u,w,v)

Local PXL system definitions (offline)

sensor

- PXL Sector origin is the same as STAR global
- use same convention as in SSD/IST (as a whole) and IDS to simplify software

ladder

Survey Info in Db

- Survey info stores position information of sensor,ladder etc center in STAR Global
- Local-to-Global positioning is done in terms of TGeoHMatrix
- d, n, t are unit vectors and α, β, γ the corresponding rotation angles in $x, y, z[u, w, v]$ directions [RHS]. d_{x} is the unit vector d projection on the x-axis etc

TGeoHMatrix definition
$\left(\begin{array}{c}x_{G} \\ y_{G} \\ z_{G} \\ 1\end{array}\right)=\left[\begin{array}{cccc}\hat{d}_{x} & \hat{n}_{x} & \hat{t}_{x} & d_{x} \\ \hat{d}_{y} & \hat{n}_{y} & \hat{t}_{y} & d_{y} \\ \hat{d}_{z} & \hat{n}_{z} & \hat{t}_{z} & d_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left(\begin{array}{c}x_{L} \\ y_{L} \\ z_{L} \\ 1\end{array}\right)$

Local to Global transformation definition

$$
x_{G}^{i}=R \cdot x_{L}^{i}+T^{i}
$$

$$
x_{G}=\left(\hat{d}_{x} \cdot x_{L}+\hat{n}_{x} \cdot y_{L}+\hat{t}_{x} \cdot z_{L}\right)+d_{x}
$$

