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Abstract

An iterative algorithm for track based alignment is presented. The algorithm can be applied to rigid
composite detector structures or to individual modules. The iterative process involves track reconstruc-
tion and alignment, in which the x? function of the hit residuals of each alignable object is minimized.
Six alignment parameters per structure or per module, three for location and three for orientation, can
be computed. The method is computationally light and easily parallelizable. The performance of the
method is demonstrated with simulated tracks in the CMS pixel detector and tracks reconstructed from
experimental data recorded with a test beam setup.
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1 Introduction

Modern silicon tracking detectors such as the CMS tracker [1] are composed of a large number of modules as-
sembled in a hierarchy of support structures. The sensor modules are assembled in ladders or petals. Ladders and
petals are in turn assembled in cylindrical or disc-like layers which further constitute higher-level structures.

Sophisticated geometrical calibration is essential in such large detector systems to fully benefit from the high
intrinsic resolution of the silicon sensors. For instance the CMS tracker consists of approximately 16000 individual
sensors, which have to be position-calibrated with an accuracy comparable to their intrinsic resolutions of 10 —
50 pm [1]. The corresponding assembly precisions range from 100 pm to a few hundreds of pm [2]. Therefore the
position information must be improved by an order of magnitude with calibration procedures.

A laser alignment system and track based alignment algorithms will be used to align the CMS tracker. Infrared
laser beams monitor positions of selected detector modules, and can be used to align the corresponding support
structures [3]. The laser alignment system does not, however, cover all parts of the CMS tracker. In addition,
it cannot be used to align individual detector modules. Track based alignment is needed to complement the laser
alignment system in these issues. In particular, the alignment of the pixel detector is carried out solely with particle
tracks.

Trajectories of high momentum particles are interesting for track based alignment, since they are continuous and
smooth. The hit residuals, i.e. the spatial differences between the reconstructed track and the recorded hit positions,
provide constraints such that the position and orientation of the modules can be optimized with a large sample of
tracks.

This paper presents an effective method by which individual sensors in a detector setup can be aligned to a high
precision with respect to each other. This track based “Hits and Impact Points” (HIP) method has a long history [4,
5, 6]. The formalism has been recently extended in [8] to the case of the alignment of composed hierarchical
tracker structures, for example rods or layers.

The algorithm involves iteration over the event sample. During each iteration particle tracks are kept static, which
makes the calculation of alignment corrections computationally easy. After each pass over the event sample, the
alignment corrections are computed and used in the next iteration over the event sample and the tracks are refitted
with the alignment corrections.

2 Alignment Transformations

The following conventions are used in the formulations: Lower case, bold face characters r, g and q denote 3D
vectors in global, composite and module ("local’) system, respectively. The upper case, bold face characters R and
G denote rotation from global to local and from global to composite system, respectively.

The local coordinates q = (u, v, w) are defined such that w is normal to the sensor and u and v are the measured
coordinates (for single sided strip modules only u is measured). The global coordinates are denoted as r =
(x,y, z). The transformations are then:

qa = R(r—rp) 1)
g = G(r—go) ()
A composite mis-alignment (unknown small translation and rotation) would be corrected by a rotation matrix AG

and a translation vector Ag which would be common to a group of sensors, e.g. belonging to the same support
structure. The correction for alignment is: g — AGTg + Ag so that the corrected transformations are defined by:

G — Ge¢=AGTG 3
g — g.=go— G'AGAg. 4)

The correction of g is to be expressed in terms of the transformation between the local and global systems. It
follows that the corrected rotations and their centres are:

R = RGTAGTG 3)
r. = go— GTAGAg+GTAGG(ro —go). (6)

Notice that the corrective rotation AG and translation Ag are common to a group of sensors to be aligned collec-
tively.



3 HIP Alignment Algorithm

A basic feature of the HIP algorithm is that particle trajectories are kept static during a pass over the events. The
benefit is that only small-matrix formalism is needed. The algorithm involves inversion of only up to 6 <6 matrices.
A consequence is that the algorithm requires iteration over the event sample - at each pass the tracks are refitted
and new alignment corrections calculated. The iteration continues until no statistically significant improvement is
obtained for the alignment. Another basic feature is that a particle trajectory is approximated as a straight line in
the vicinity of the impact point.

The algorithm can easily be run in a parallel environment by processing a fraction 1/N of the event sample on N
machines in parallel. The alignment parameters p are calculated using the combined information before the next
iteration is started.

A key formula of the algorithm is the variation of the trajectory impact point q « as a function of the corrections
AG and Ag. The derivation of the formula is a small linear algebra exercise with the following result:

q>< (AGvAg) :RC [r>< 7rc+hX(AG5Ag) é]? (7)

where r is the uncorrected impact point, § is the trajectory direction at ry and the scalar function Ay is defined
as:

Re(rx — 1) W

hy(AG, Ag) = — ®)

Re§-w
For verification one can readily see that the 3rd component of (7) is identically zero.

The determination of the tilt and translation parameters (Aca, A3, Av) and (Agy, Aga, Ags) takes place by
the x? minimization method. The terms of the x? sum are of the form &V, 'e;, where V; is the sum
of hit and impact point covariance matrices. The x? function is non-linear in terms of the parameters p =
(Ag1, Ags, Ags, Aa, AB, Av) so the linearized x? minimization method is used for solution. This method em-
ploys the first derivatives of the residuals € = qx — q,,. The hit measurements in the local system (q,,) do not
depend on the alignment parameters p so that the derivatives of & revert to the derivatives of qx (AG, Ag) (7).

The derivatives of (7) with respect to the translation parameters (p1, p2, p3) = (Ag1, Aga, Ags) are:

Rcs
[Resls’

(?q_% =RGTe; — [RGT&,]5

J=123, 9)
Op;

where &; are the unit vectors (1,0,0), (0,1,0) and (0,0,1). The derivatives with respect to the tilt angles (pa, 5, P6) =
(Aa, AB, Av) are:
dqx R¢S
Opj [Rcs|s’

where Dj are the derivatives of the matrix R and the vector r(p) is defined as: r(p) = rx + h« (P)S — go-

= DJr(I_)) - [D.lr(l_))]g j = 4a 57 67 (10)

It is interesting to note that in case the ’structures’ are composed of only one module (i.e. G = R), the above
formalism reduces to the module by module alignment formalism described in the earlier paper [6]. Another
special case is when the composite coordinate system is the same as the global system (i.e. G = I, go = 0). This
may be the case, for example, for barrel layers.

4 Alignment Studies
4.1 Stand-alone Alignment of CM S Pixel Barrel Modules with Simulated Tracks

The algorithm is applied to the CMS pixel barrel detector. It has been implemented within the CMS reconstruction
software ORCA [7] using a common alignment software framework. Silicon sensors and composite structures
were misaligned at the reconstruction level with a dedicated software tool [2].

Random misalignments, sampled from a uniform distribution between +300 pm, were applied to the pixel barrel
modules in x,y and z. The pixel endcaps and the CMS strip tracker were not misaligned. Details of the study are
described in [8].

Half a million of fully simulated and reconstructed Z° — i~ events were used with 19 iterations. The result
is shown in Fig. 1. The alignment corrections have been obtained only for 504 pixel barrel modules (720 in total)
since tracks are required to have hits in all three pixel barrel layers.
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Figure 1: Alignment of 504 pixel barrel modules. The residuals in global coordinates are shown as a function of
iteration for 100 randomly chosen modules (left) and projected for the initial misalignment (iteration 0) and after
1,10 and 19 iterations (right). The statistical parameters refer to the iteration 19.

To avoid a bias originating from the misaligned strip tracker in the alignment, the procedure refits the track with
pixel detector hits only. In addition, the two muon tracks from the Z° — p*pu~ events are fitted to a common
vertex. The pr estimate was obtained from the full track fit (using also the misaligned strip tracker). This improved
significantly the convergence of the standalone pixel alignment.

A special data format containing only tracks used in alignment was utilized. In addition, the refit of already
reconstructed tracks was made using hits already found by the pattern recognition. In this configuration, the CPU
time needed is dominated by the time needed to read in the events and to refit the tracks used for alignment. One
iteration could be processed in approximately 20 minutes in a parallel environment of 20 CPUs in Intel Xeon 3.06
GHz nodes.

A good convergence is obtained for the alignment parameters. The residual RMS values are around 25 pm for
all three coordinates. Although this is not yet a sufficiently precise result considering the intrinsic resolution of
the pixel modules, it demonstrates that the method for the standalone alignment of the pixel detector works. The
precision of the alignment can be improved by making use of a larger track sample, such as hadrons in minimum
bias or jet events.

4.2 Alignment with Data from a Test Beam Setup

The algorithm was applied also to test beam data recorded with a test beam setup called the Cosmic Rack, which
mimicks the outer barrel of the CMS Tracker. A full chain of genuine CMS hardware and reconstruction software
was used. The Cosmic Rack is illustrated in Fig. 2.

A beam of 120 GeV pions was used in the study. The cosmic rack was equipped with six rods, each holding two
detector modules. The outermost rods provided reference measurements in two dimensions, whereas modules of
the four innermost rods were measuring only one direction in which they were also aligned. Details of the setup
can be found in [9].



Figure 2: Left: Photograph of the TOB Cosmic Rack; Right: Schematic view of rods and scintillators in the fully
equipped Cosmic Rack.
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Figure 3: Left: the convergence of the mean x? value of the test beam data when only z is aligned. The initial value of 61 at
iteration zero is not shown; Right: the corresponding convergence of one particular module (initial value O not shown).

The convergence of the mean 2 values for the tracks are shown in Fig. 3. Also the convergence of the alignment
correction is shown for one particular module. As can be expected in this simple test setup, the algorithm converges
very quickly, reaching approximately the final level already after two iterations.

5 Prospects

The results of the stand-alone alignment for CMS pixel detector are encouraging. Results obtained from the align-
ment of the Cosmic Rack serve as a small-scale proof-of-principle for both software and hardware. More detailed
studies of realistic alignment scenarios are needed as well as studies of how to benefit from special events: mini-
mum bias events, cosmic muons etc., which can be very beneficial in the early operation of the CMS experiment.
The invariant mass constraint from muon pairs of Z or J/1) would also be beneficial for the alignment.
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