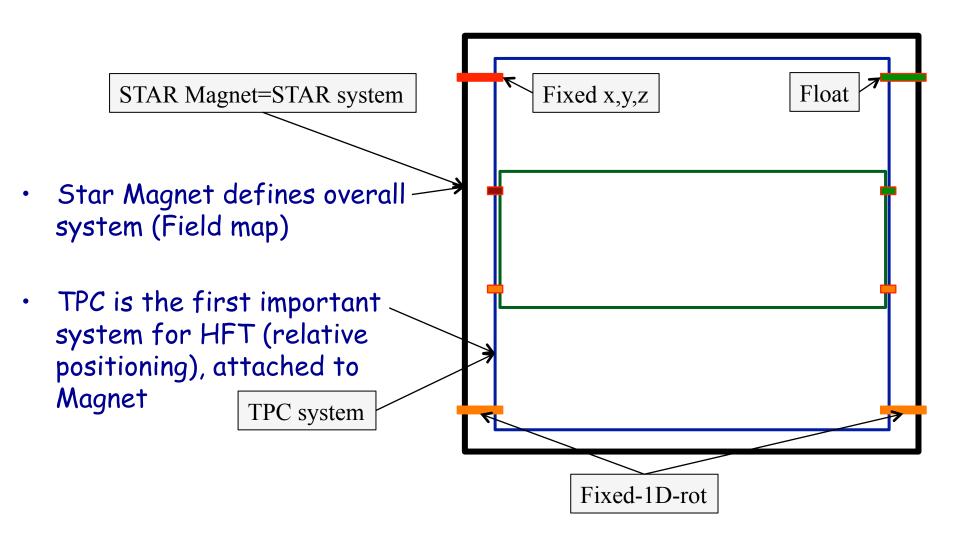
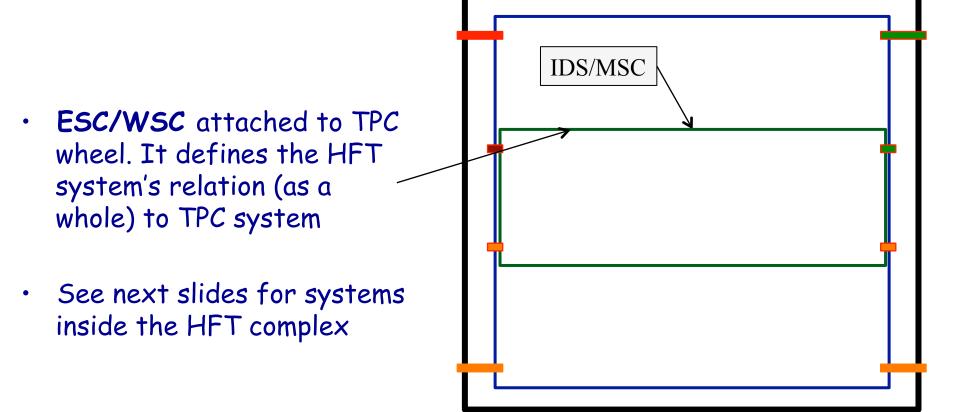
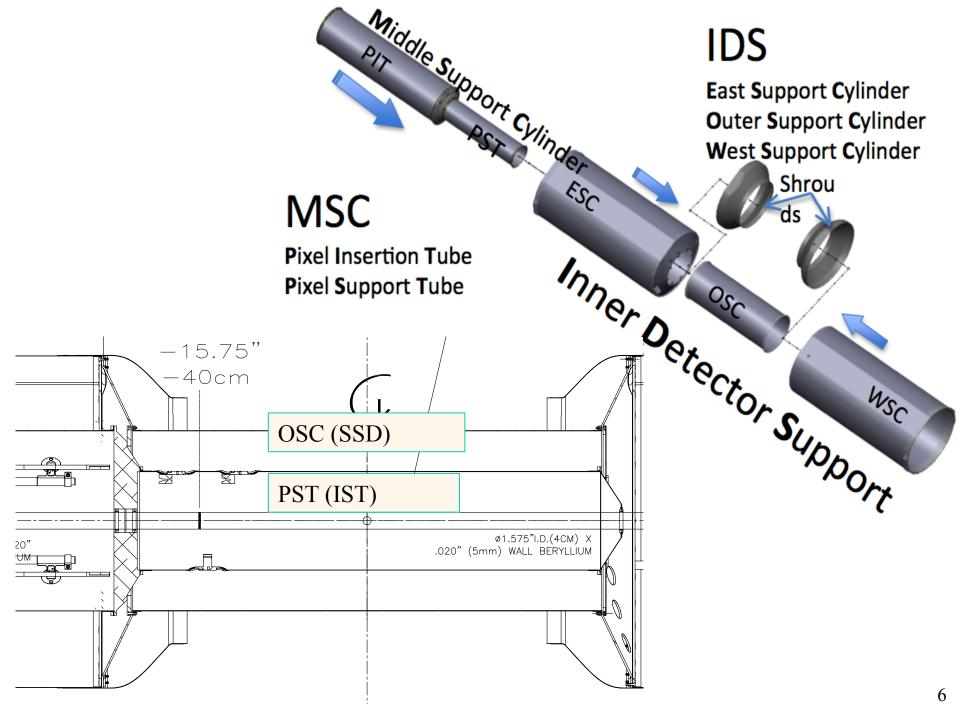

HFT Alignment Procedures

S. Margetis, KSU

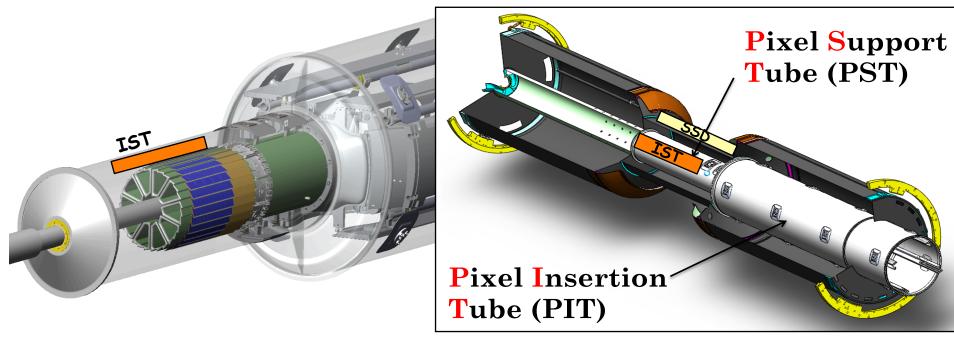
- Introduction
- HFT Configuration System hierarchy
- (thoughts on) Proposed procedures
- Tools/Implementation (Jonathan)
- Plans, Timeline and Issues
- Summary

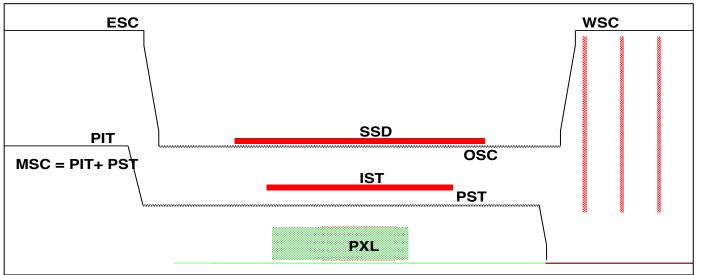

Flowchart of Geometry/Survey/Alignment




Introduction

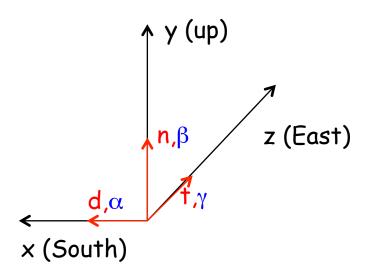
- Anything we build or touch or use needs Modeling, Survey and in-situ Alignment
 - i.e. versioning
- Survey will freeze position of sensors on sectors (PXL). Help also with sector on hemisphere (PXL?). For SSD/IST will freeze position of sensors on ladder and ladder shape
- For each yearly Run the in-situ position of major detector elements needs to be rechecked


Reference System Hierarchy



General Layout

Reference systems - comments


- In general survey accuracy of critical components (relative pixel and/or sensor positions) expected to be better than acceptable values
- Will soon need surveyed positions of IDS targets
 - to build 'ideal' position Db
 - Sub-millimeter accuracies acceptable -> Tracks will fix them
- All this information is represented as matrices (position/orientation)
 of their center-of-gravity. These matrices are used to define Local
 to Global transforms

GEANT geometry can/should be synchronized with Realistic Volume hierarchy instead of the current 'patch-the-hit' scheme

- VMC environment will facilitate this

Offline use of Geometry Info

Definitions

- Local-to-Global transforms are done in terms of TGeoHMatrix
- This can be e.g. the center of a sensor or a pixel.
- n,d,t are unit vectors and β , α , γ the corresponding rotation angles, RHS

TGeoHMatrix definition

$$\begin{pmatrix} x_G \\ y_G \\ z_G \\ 1 \end{pmatrix} = \begin{bmatrix} \hat{d}_x & \hat{n}_x & \hat{t}_x & d_x \\ \hat{d}_y & \hat{n}_y & \hat{t}_y & d_y \\ \hat{d}_z & \hat{n}_z & \hat{t}_z & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_L \\ y_L \\ z_L \\ 1 \end{pmatrix}$$

Transform example

$$x_G^i = R \cdot x_L^i + T^i$$

$$x_G = (\hat{d}_x \cdot x_L + \hat{n}_x \cdot y_L + \hat{t}_x \cdot z_L) + d_x$$

Local <-> Global transforms

OLD SSD

```
\mathbf{WG} = \mathbf{Tpc2Global} * \mathbf{GL} * \mathbf{SG} * \mathbf{LS} * \mathbf{WLL}; WaferInGlobal=\mathbf{Tpc2Magnet} *Ssdin\mathbf{Tpc*SectorInSSD*LadderInSector*} WaferInLadder
```

HFT SSD

```
WG = Tpc2Global * GL * LO * WLL;
WaferInGlobal=Tpc2Magnet *IDS2Tpc*Ladder2IDS*WaferInLadder
```

HFT IST

```
WG = Tpc2Global * GL * PI *LO * WLL;
WaferInGlobal=Tpc2Magnet *IDS2Tpc*PST2IDS*Ladder2PST*WaferInLadder
```

HFT PXL

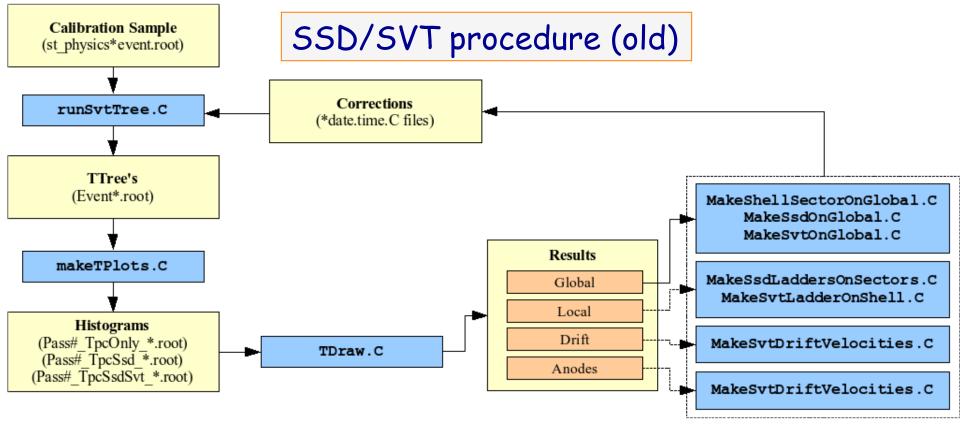
```
PG = Tpc2Global *GL * PI *DP * SD * WLL;

PXLInGlobal=Tpc2Magnet*IDS2Tpc*PXL2IDS*DShell2PXL*Sector2DShell*(Pxl-Sector)
```

Alignment methods (outline only)

- · There are 'Global' and 'Self' Alignment methods
 - Global uses mostly 'external' track information
 - Self uses mostly 'internal' track information
 - For HFT we propose a mix (more Self!)
- We have successful 'Global' methods already in place (SVT/SSD)
 - TPC distortions, t0, 'track tof' etc is a problem
- In HFT system we have significant sensor overlap to make use of 'Self' alignment methods. We also have high precision PXL info with excellent sector rigidity, survey info, placement.
- We need to use this advantage

The hit-track residual Δx in the direction perpendicular to the axial strips is given by


$$\Delta x \equiv x_{track} - x_{hit} = \delta x + z \sin \beta + \tan \phi (\delta y + z \sin \alpha + x \sin \gamma) - f(\vec{B}, \phi) \tag{1}$$

and for the direction parallel to the axial strips (in double sided ladders)

$$\Delta z \equiv z_{track} - z_{hit} = \delta z + x \sin \beta + \tan \theta (\delta y + z \sin \alpha + x \sin \gamma) \tag{2}$$

The simplest approach to determining the alignment parameters is to use the means of the following histograms(for the Δx case):

- 1. the distribution of residuals integrated over y, z, and ϕ , which gives δx directly,
- the residual vs. z which gives sin β,
- the residual vs. tan φ which gives δy,
- the residual/tan φ vs. x which gives sin γ,
- 5. and the residual/tan ϕ vs. z which gives $\sin \alpha$.

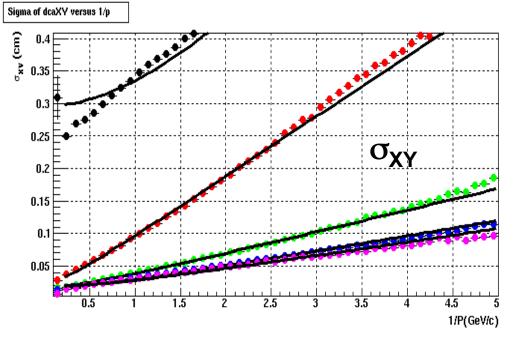
The sequence to be followed for each detector is:

- 1) **SSD Alignment**: (TPC tracks Only)
 - Global SSD on Global and Sectors on Global;
 - Local SSD Ladders on Sectors;
- 2) **SVT Alignment**: (TPC+SSD hits on tracks)
 - Global SVT on Global and Shells on Global;
 - Local SVT Ladders on Shells; (Drift Velocities);
- 3) Consistency Check: (TPC+SSD+SVT hits on tracks)
 - Global;Local (ladders);Drift Velocities;

- For alignment we use "good" (well defined) tracks fitted with the primary vertex. (e.g. NFP, pt cuts)
 - Use of primary tracks significantly improves precision of track predictions in HFT and reduces influence of systematics.
 - Good statistics is a must (up to a point)(see example in Jonathan's talk)
- In order to minimize TPC space-charge distortions, tracking errors (mismatches) and PXL pileup we will need to use low luminosity and low-medium multiplicity data as the alignment sample
- Method is iterative since it is precise for small deviations

HFT Proposed Procedure:

Remember: PXL detector is a big asset (c.f. TPC)


- 1. Global Alignment of PXL
 - Relative alignment of PXL sectors and halves using overlap region AND halves using Event vertex found by each half
 - Relative alignment of PXL and TPC [TPC primary tracks]
 - Iterative->(PXL, PXL half, sector)
 - Exact sequence/interplay needs to be determined
- 2. Primary tracks with TPC+PXL hits
 - Alignment of IST ladders with respect to PXL
- 3. Primary tracks with (All SSD) hits
 - Alignment of SSD ladders
- 4. Check
- We assume that sensors on ladder and ladders on sectors are pre-surveyed to specs

Precision requirements for HFT alignment

- Pointing accuracy is ultimate figure of merit: DCA resolution (in bending XY =r ϕ plane: σ_{DCA}), and resolution in non-bending plane: σ_z
 - $\sigma^2_{DCA} = \sigma^2_{vertex} + \sigma^2_{track} + \sigma^2_{MCS}$ (the same for non-bending plane)
 - primary vertex resolution: σ_{vertex} ~ 3 μ m+(120 μ m / $\int N_{ch}$); for central Au+Au collisions turns out to be ~5 μ m
 - track pointing resolution: $\sigma_{\text{track}} \sim 1.5 \ \sigma_{\text{XY}}$ [in our case, where σ_{XY} is intrinsic detector precision (~10µm)] \oplus alignment errors
 - multiple scattering (MCS): σ_{MCS} ~ 20µm / βp (GeV/c) (for thin PXL)

Overall mis-alignments of < 10 μ m or <MCS are acceptable

DCA resolution

·SVT/SSD example

- •With increasing no. of fitted Si points it is improved by ~ order of magnitude.
- •Contribution from tracking (constant term) is comparable with MCS @ 1 GeV/c

Number of Silicon Points fitted to track	σ _{XY} @1GeV/c (μm)
0 - ● TPC only	3350
1 - TPC+SSD	967
2 - TPC+SSD+SVT	383
3 - TPC+SSD +SVT	296
4 - TPC+SSD +SVT	281

Tasks

- Need to finalize the PXL sensor representation in Db (prototype sector)
- Need to setup Data formats, code to deliver matrices etc
- Need to know/map the (realistic) error of every survey step
- Need to start simulations to determine alignment software performance
- Need to rework GEANT geometry synchronization (STV, VMC)
- Need to finalize SSD procedures and initialize/define IST ones
- Need to include gravitational sagging in SSD and IST (?) model
- Need to keep/use expertise around
- Need to rework/prioritize Software Summer activities

Plans/Timeline

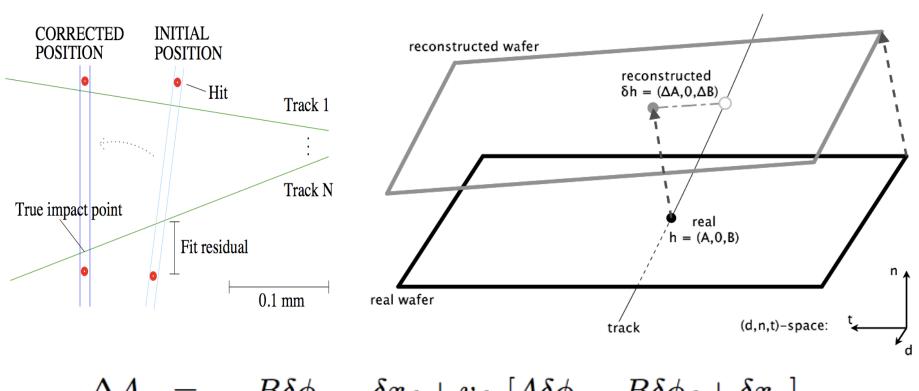
Some of these efforts need to go in parallel

- It will take about a month or two to setup the chain and clean up the code for all HFT subsystems (current environment)
 - Includes software, Db structures, Hit, conventions
- We can do (some) tests in current environment or begin porting to VMC (with help)
- By the end of the year we would need to have defined and have established working interfaces to Survey for PXL
- Full chain ready to work with cosmics/data when available

Only then, when done, we can start looking at other packages

Summary

- The building up of a working chain is coming along
- All 3 needed efforts are moving along (Geo, Sur, Al)
- Benefited enormously from previous experience as we hope to benefit from current experience
- A lot still needs to be done
- Target to have a working chain for data beginning of the year is not unrealistic


Backup

References

- 1. "The STAR time projection chamber a unique tool for studying high multiplicity events at RHIC", M.Anderson et al., NIM A499: 652,2003.
- 2. "The laser system for the STAR time projection chamber", J. Abele et al., NIM A499: 692,2003.
- 3. "Correcting for distortions due to ionization in the STAR TPC", G. Van Buren et al.,NIM A566:22-25,2006.
- 4. "The STAR Silicon Vertex Tracker" A large area Silicon Drift Detector", R.Bellwied et Al., NIM A499: 640, 2003.
- 5. "The STAR silicon strip-detector (SSD)", L.Arnold et al., NIM 2003 A499: 652, 2003.
- 6. "Alignment Strategy for the SMT Barrel Detectors", D.Chakborty, J.D.Hobbs, October 13, 1999. D0 Note (unpublished)
- 7. "Sensor Alignment by Tracks", V.Karimaki et al., CMS CR-2004/009 (presented at CHEP 2003)
- 8. http://phys.kent.edu/~margetis/STAR/HFT/Survey/SVTSmallScaleSelfAlignment.pdf
- 9. http://phys.kent.edu/~margetis/STAR/HFT/Survey/SVT_Alignment_JPCSL.pdf

Small Scale Self-Alignment with the SVT

G. Van Buren[†], Y. Fisyak[†], S. Margetis[‡], V. Perevoztchikov[†] †Brookhaven National Laboratory, Upton, New York 11973 ‡Kent State University, Kent, Ohio 44242

$$\Delta A = -B\delta\phi_n - \delta x_d + v_{dn}[A\delta\phi_t - B\delta\phi_d + \delta x_n]$$

$$\Delta B = A\delta\phi_n - \delta x_t + v_{tn}[A\delta\phi_t - B\delta\phi_d + \delta x_n]$$

http://drupal.star.bnl.gov/STAR/comp/calib/svt/selfalign

The hit-track residual Δx in the direction perpendicular to the axial strips is given by

$$\Delta x \equiv x_{track} - x_{hit} = \delta x + z \sin \beta + \tan \phi (\delta y + z \sin \alpha + x \sin \gamma) - f(\vec{B}, \phi) \tag{1}$$

and for the direction parallel to the axial strips (in double sided ladders)

$$\Delta z \equiv z_{track} - z_{hit} = \delta z + x \sin \beta + \tan \theta (\delta y + z \sin \alpha + x \sin \gamma) \tag{2}$$

$$\Delta A = -B\delta\phi_n - \delta x_d + v_{dn}[A\delta\phi_t - B\delta\phi_d + \delta x_n]$$

$$\Delta B = A\delta\phi_n - \delta x_t + v_{tn}[A\delta\phi_t - B\delta\phi_d + \delta x_n]$$

The simplest approach to determining the alignment parameters is to use the means of the following histograms(for the Δx case):

- 1. the distribution of residuals integrated over y, z, and ϕ , which gives δx directly,
- 2. the residual vs. z which gives $\sin \beta$,
- 3. the residual vs. $\tan \phi$ which gives δy ,
- the residual/tan φ vs. x which gives sin γ,
- and the residual/tan φ vs. z which gives sin α.

D.Chakraborty, J.D.Hobbs, D0 note Oct.13, 1999

A. Appendix. Jacobian of measured hit position deviation from predicted track ones with respect to misalignment parameters.

- 1. Misalignment of the detector in Global Coordinate System (GCS)
- $\vec{j} = (j_x, j_y, j_z)$ track direction cosinuses in GCS on measurement plane,
- $\vec{x} = (x, y, z)$ track prediction in GCS on measurement plane,
- \$\vec{x}_{hit} = (x_{hit}, y_{hit}, z_{hit})\$ hit position in GCS on measurement plane,
- $\vec{v} = (v_x, v_y, v_z)$ direction of perpendicular to measurement plane in GCS,
- $\vec{\Delta} = (\Delta_x, \Delta_y, \Delta_z, \Delta_\alpha, \Delta_\beta, \Delta_\gamma)$ misalignment parameters: shift and rotation with respect to X,Y,Z axises, respectively.
- $\vec{x}_{hit} \vec{x} = \mathbf{G} \cdot \vec{\Delta} =$

$$\begin{pmatrix} -1 + j_x v_x & j_x v_y & j_x v_z & j_x (-v_y z + v_z y) & -z + j_x (v_x z - v_z x) & y + j_x (-v_x y + v_y x) \\ j_y v_x & -1 + j_y v_y & j_y v_z & z + j_y (-v_y z + v_z y) & j_y (v_x z - v_z x) & -x + j_y (-v_x y + v_y x) \\ j_z v_x & j_z v_y & -1 + j_z v_z & -y + j_z (-v_y z + v_z y) & x + j_z (v_x z - v_y x) & j_z (-v_x y + v_y x) \end{pmatrix} \vec{\Delta}$$

- 2. Misalignment of the detector in Local Coordinate System (LCS)
- $\vec{u} = (u, v, w \equiv 0)$ track prediction in LCS on measurement plane.
- (t_u, t_v) track direction tangenses in Local Coordinate system (LCS) on measurement plane.
- $\vec{u}_{hit} = (u_{hit}, v_{hit})$ hit position in LCS on measurement plane,
- δ = (δ_u, δ_v, δ_w, δ_α, δ_β, δ_γ) misalignment parameters, shift and rotation with respect to local u,v,w axises, respectively.

•

$$\vec{u}_{hit} - \vec{u} = \mathbf{L} \cdot \vec{\delta} = \begin{pmatrix} -1 & 0 & t_u & t_u v & -t_u u & v \\ 0 & -1 & t_v & t_v v & -t_v u & -u \end{pmatrix} \vec{\delta}$$

• $(u_{hit} - u) = -\delta_u + t_u(\delta_w + v\delta_\alpha - u\delta_\beta) + v\delta_\gamma;$ $(v_{hit} - v) = -\delta_v + t_v(\delta_w + v\delta_\alpha - u\delta_\beta) - u\delta_\gamma;$