Alignment Details
S. Margetis, KSU

Definitions

STAR Global Coordinates

Wafer Local Coordinates

- Local v (along ladder) is fixed and along global $+z$
- Local w (normal to u-v [wafer] plane). Points away from exposed surface
- Local u (r-phi on wafer plane) varies so it forms a RHS with v-w (u,w,v)

Wafer Local Coordinates Details

D. Chakraborty, J. D. Hobbs

Gene Van Buren et al.

- We use the above RHS notation (u,w,v)
- Karimaki et al (CMS) use the (u, v, w) notation. In that system $v=-$ (our v) otherwise system is left-handed
- So the documentation is confusing...needs some straightening up....

Wafer Local Coordinates Details

Wafer Local Coordinates Details

D. Chakraborty, J. D. Hobbs

u (r-phi direction for RHS)

Gene Van Buren et al.

- Uses $\mathrm{v}_{\text {hit }}-\mathrm{V}_{\text {prediction }}$ so it needs a (-) sign
- track-plane angles sign comes from component
- $\mathrm{u}_{\mathrm{d} n}=-\tan \phi$
- $u_{t n}=\tan \theta$

The hit-track residual Δx in the direction perpendicular to the axial strips is given by

$$
\begin{equation*}
\Delta x \equiv x_{\text {track }}-x_{\text {hit }}=\delta x+z \sin \beta+\tan \phi(\delta y+z \sin \alpha+x \sin \gamma)-f(\vec{B}, \phi) \tag{1}
\end{equation*}
$$

$$
\Delta A=-B \delta \phi_{n}-\delta x_{d}+v_{d n}\left[A \delta \phi_{t}-B \delta \phi_{d}+\delta x_{n}\right]
$$

$$
\left(u_{h i t}-u\right)=-\delta_{u}+t_{u}\left(\delta_{w}+v \delta_{\alpha}-u \delta_{\beta}\right)+v \delta_{\gamma}
$$

... which after the convention corrections reach agreement with the exception of Chakraborty that has a sign problem [must be a typo]

$$
\begin{array}{|}
\Delta x=-\Delta \mathrm{A}=\delta x_{d}+B \sin \beta+\tan \phi\left(\delta x_{n}-B \delta \phi_{d}+A \delta \phi_{t}\right) \\
\Delta x \equiv x_{\text {track }}-x_{h i t}=\delta x+z \sin \beta+\tan \phi(\delta y+z \sin \alpha+x \sin \gamma)-f(\vec{B}, \phi)
\end{array}
$$

Need to reconcile this sign - most likely a typo My Math shows others to be right

Local PXL system definitions (offline)

sensor

- PXL Sector origin is the same as STAR global
- use same convention as in SSD/IST (as a whole) and IDS to simplify software

ladder

Offline use of Geometry Info

- Local-to-Global transforms are done in terms of TGeoHMatrix
- This can be e.g. the center of a sensor or a pixel.
- d, n, \dagger are unit vectors and α, β, γ the corresponding rotation angles in $x, y, z[u, w, v]$ directions [RHS]. d_{x} is the unit vector d projection on the x-axis etc
TGeoHMatrix definition
$\left(\begin{array}{c}x_{G} \\ y_{G} \\ z_{G} \\ 1\end{array}\right)=\left[\begin{array}{cccc}\hat{d}_{x} & \hat{n}_{x} & \hat{t}_{x} & d_{x} \\ \hat{d}_{y} & \hat{n}_{y} & \hat{t}_{y} & d_{y} \\ \hat{d}_{z} & \hat{n}_{z} & \hat{t}_{z} & d_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left(\begin{array}{c}x_{L} \\ y_{L} \\ z_{L} \\ 1\end{array}\right)$

Local to Global transformation - definition

$$
\begin{gathered}
x_{G}^{i}=R \cdot x_{L}^{i}+T^{i} \\
x_{G}=\left(\hat{d}_{x} \cdot x_{L}+\hat{n}_{x} \cdot y_{L}+\hat{t}_{x} \cdot z_{L}\right)+d_{x}
\end{gathered}
$$

For small rotations [8]

$$
\left(\begin{array}{c}
x_{G} \\
y_{G} \\
z_{G} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
\hat{d}_{x} & \hat{n}_{x} & \hat{t}_{x} & d_{x} \\
\hat{d}_{y} & \hat{n}_{y} & \hat{t}_{y} & d_{y} \\
\hat{d}_{z} & \hat{n}_{z} & \hat{t}_{z} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x_{L} \\
y_{L} \\
z_{L} \\
1
\end{array}\right) \quad\left(\begin{array}{c}
x_{G} \\
y_{G} \\
z_{G} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & -\gamma & \beta & d_{x} \\
\gamma & 1 & -\alpha & d_{y} \\
-\beta & \alpha & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x_{L} \\
y_{L} \\
z_{L} \\
1
\end{array}\right)
$$

Successive small rotations are additive, group Abelian(!) $\left[\alpha^{2}=\beta^{2}=\gamma^{2}=\alpha \beta=\ldots=0\right]$
$R=R_{1} \otimes R_{2}=\left[\begin{array}{ccc}1 & -\gamma_{1} & \beta_{1} \\ \gamma_{1} & 1 & -\alpha_{1} \\ -\beta_{1} & \alpha_{1} & 1\end{array}\right] \cdot\left[\begin{array}{ccc}1 & -\gamma_{2} & \beta_{2} \\ \gamma_{2} & 1 & -\alpha_{2} \\ -\beta_{2} & \alpha_{2} & 1\end{array}\right]=\left[\begin{array}{ccc}1 & -\left(\gamma_{1}+\gamma_{2}\right) & \left(\beta_{1}+\beta_{2}\right) \\ \left(\gamma_{1}+\gamma_{2}\right) & 1 & -\left(\alpha_{1}+\alpha_{2}\right) \\ -\left(\beta_{1}+\beta_{2}\right) & \left(\alpha_{1}+\alpha_{2}\right) & 1\end{array}\right]$

That is why we use multiplications to move from one system to another

$$
\text { PG } \quad \text { Tpc2Global *GL } * \mathrm{PI} \quad * \mathrm{DP} \quad * \mathrm{SD} \quad * \mathrm{WLL}
$$

PXLInGlobal=Tpc2Magnet*IDS2Tpc*PXL2IDS*DShell2PXL*Sector2DShell*(Pxl-Sector)

```
//:Pointer to data: Survey.time.C:
```

// $\quad \mathrm{m}=\mathrm{R} \star \mathrm{l}+\mathrm{t}$
for SvtOnGlobal
SVT
$/ / I d=0$
$/ / \mathrm{Id}=[0,1]$
for ShellonGlobal,
// 0 is the x (South) Shell, 1 is the -x (North) Shell"
$/ / I d=1000 *$ barrel + ladder for LadderOnSurvey
$/ /$ Id $=1000$ *barrel + ladder for LadderOnShell
$/ /$ Id = 1000*barrel + 100*wafer + ladder for WaferOnLadder
//
$/ / \mathrm{Id}=0$
// Id = sector [1-4]
$/ /$ Id = 100*sector + ladder
$/ / I d=7000+100 *$ wafer + ladder
struct Survey $\{$

for SsdOnGlobal SsdSectorsOnGlobal SsdLaddersOnSectors SsdWafersOnLadders

//		r0	00 r 01	r02)	(xl)			to)			r00	r02	r01)	(xl)			to
//	$\mathrm{R}=$	r1	10 r 11	r12)	(y1)	$+$		t1)	$=$		r10	r12	r11)	(21)	$+$		t1
//		r2	20 r21	r22)	(21)			t2)			r20	r22	r21)	(yl)			t2

// SSD
SsdWafersOnLadders

$\left(\begin{array}{c}x_{G} \\ y_{G} \\ z_{G} \\ 1\end{array}\right)=\left[\begin{array}{cccc}1 & -\gamma & \beta & d_{x} \\ \gamma & 1 & -\alpha & d_{y} \\ -\beta & \alpha & 1 & d_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left(\begin{array}{c}x_{L} \\ y_{L} \\ z_{L} \\ 1\end{array}\right)$

Example: PXL Sector-4 Ladder-1 and 2

$\{120,0.2654888,0.9641139,0.0000000,-0.9641139,0.2654888,0.0000000,0.0000000,-0.0000000,1.0000000,-2.19933$, $-1.51911,0.00000,0.001,0.001,0.001,0.001,0.001,0.001\} / /$ PXMO_1/PXLA_4/LADR_1/PXSI_1/PLAC_1
$\{130,-0.1385336,-0.9903577,0.0000000,0.9903577,-0.1385336,0.0000000,0.0000000, \overline{0.0000000,1.0000000,-7.40004, ~}$ $-3.53066,0.00000,0.001,0.001,0.001,0.001,0.001,0.001\} / /$ PXMO_1/PXLA_4/LADR_2/PXSI_1/PLAC_1

Survey geometry + Calibrations: Based on day 155 from Long, got it 7/5 FIRST PASS ESTIMATED Corrections

SECTOR 2

| \|dX mkm | \|dY mkm | \|dZ mkm | \|alpha mrad | \|beta mrad | | gamma mrad | \|Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - 250 | -200 | 0 | 5 | -5 | 0 | \| PXL sector 2 Ladder 1 |
| - 500 | \| -250 | -380 | 5 | -5 | 0 | \| PXL sector 2 Ladder 2 |
| - 200 | \| -200 | 0 | 5 | -5 | 0 | \| PXL sector 2 Ladder 3 |
| -170 | \|-200 | -500 | 5 | -5 | 0 | \| PXL sector2 Ladder 4 |

SECTOR 4

80	$\mid-300$	$\mid-300$	$\mid 1$		1	\mid	0	PXL sector 4 Ladder 1
-30	$\mid 150$	$\mid-300$	$\mid 1$	$\mid 1$	$\mid 0$	\mid Ladder 2		
-80	$\mid 220$	$\mid-420$	$\mid 1$	$\mid 1$	\mid	0	\mid Ladder 3	
-200	$\mid 300$	$\mid-400$	$\mid 1$	$\mid 1$	$\mid 0$	\mid Ladder 4		

Survey geometry + Calibrations: Based on day 155 from Long, got it 7/5 FIRST PASS ESTIMATED Corrections

SECTOR 7

| -430 | $\mid-280$ | $\mid 50$ | $\mid-10$ | $\mid 10$ | $\mid 10$ | PXL sector 7 Ladder 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -800 | $\mid-350$ | $\mid 350$ | $\mid-10$ | $\mid 10$ | $\mid 10$ | Ladder 2 |
| -450 | $\mid-350$ | $\mid 200$ | $\mid-10$ | $\mid 10$ | $\mid 10$ | Ladder 3 |
| -200 | $\mid-250$ | $\mid 50$ | $\mid-10$. | $\mid 10$ | $\mid 10$ | Ladder 4 |

Local to Global

$$
\begin{gathered}
\left(\begin{array}{c}
x_{G} \\
y_{G} \\
z_{G} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & -\gamma & \beta & d_{x} \\
\gamma & 1 & -\alpha & d_{y} \\
-\beta & \alpha & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x_{L} \\
y_{L} \\
z_{L} \\
1
\end{array}\right) \\
x_{G}^{i}=R \cdot x_{L}^{i}+T^{i}
\end{gathered}
$$

Global to Local

$$
\begin{gathered}
\left(\begin{array}{c}
x_{L} \\
y_{L} \\
z_{L} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & \gamma & -\beta & 0 \\
-\gamma & 1 & \alpha & 0 \\
\beta & -\alpha & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x_{G}-d_{x} \\
y_{G}-d_{y} \\
z_{G}-d_{z} \\
1
\end{array}\right) \\
x_{L}^{i}=R^{T} \cdot\left(x_{G}^{i}-T^{i}\right)
\end{gathered}
$$

Inverse turns out to be just the transpose of the original matrix

$$
1=R \otimes R^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow R^{-1}=\left[\begin{array}{ccc}
1 & \gamma & -\beta \\
-\gamma & 1 & \alpha \\
\beta & -\alpha & 1
\end{array}\right]=R^{T}
$$

Example: small rotation only in Global system around z-axis, $\delta \gamma(\delta \alpha=\delta \beta=0)$
NOTE: All transformations are Local-to-Master type: $x_{G}^{i}=R \cdot x_{L}^{i}+T^{i}$
Global system

$$
\begin{array}{r}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & -\delta \gamma & 0 & 0 \\
\delta \gamma & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x=X \\
y=Y \\
z=Z \\
1
\end{array}\right) \\
x^{\prime}=x+(-\delta \gamma) \cdot y=X-\delta \gamma \cdot Y \\
y^{\prime}=\delta \gamma \cdot x+y=X \cdot \delta \gamma+Y \\
z^{\prime}=z=Z
\end{array}
$$

Backup -1

Example: small rotation only in Global system around z-axis, $\delta \gamma(\delta \alpha=\delta \beta=0)$
NOTE: All transformations are Local-to-Master type: $x_{G}^{i}=R \cdot x_{L}^{i}+T^{i}$
Global system

$$
x \text { (South) }
$$

$$
\begin{array}{r}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & -\delta \gamma & 0 & 0 \\
\delta \gamma & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x=X \\
y=Y \\
z=Z \\
1
\end{array}\right) \\
x^{\prime}=x+(-\delta \gamma) \cdot y=X-\delta \gamma \cdot Y \\
y^{\prime}=\delta \gamma \cdot x+y=X \cdot \delta \gamma+Y \\
z^{\prime}=z=Z
\end{array}
$$

In Local system the same appears as rotation by $\delta \gamma$ plus a translation by $\Delta r=(r \prime-r)$

$$
\left(\begin{array}{c}
u^{\prime} \\
w^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{cccc}
1 & -\delta \gamma & 0 & -\delta \gamma \cdot Y \\
\delta \gamma & 1 & 0 & \delta \gamma \cdot X \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
u=A \\
w=0 \\
v=B \\
1
\end{array}\right)\left(\begin{array}{l}
u^{\prime}=u+(-\delta \gamma) \cdot Y=A-\delta \gamma \cdot Y \\
w^{\prime}=A \cdot \delta \gamma+X \cdot \delta \gamma=(A+X) \cdot \delta \gamma \\
v^{\prime}=v=B
\end{array}\right.
$$

Offline Structures

Offline Structures

HFT PXL

```
PG = Tpc2Global *GL * PI *DP *SD * WLL;
PXLInGlobal=Tpc2Magne+*IDS2Tpc*PXL2IDS*DShell2PXL*Sector2DShell*(Pxl-Sector)
```


Survey Structures

HFT PXL

```
WLL = LS *SL * PS (TPS fn);
PXLInSector=Ladder2Sector*Sensor2Ladder*Pxl2Sensor
```


Assumptions

- Survey and Offline systems will differ. Data formats will differ too. Transform from one system to other possible.
- Origin of coordinate systems should be as close as possible to geometrical center of the module \rightarrow minimize effects
- easy to work also with GEANT volume-placing matrices
- unless there is a clear reason for not doing this
- Sensor center is center of active area
- Ladder center in-between sensors 5-6 (geometrical center)
- Sector center (proposed) to be the innermost (ladder \#4) center due to the importance of first layer, rotated 180 by necessity (see next slide)
- TPS fits are assumed to be done on single sensor basis
- pixel functions/parameters will be tagged with sensor ID

HFT Alignment Procedures

S. Margetis, KSU

- Introduction
- HFT Configuration - System hierarchy
- (thoughts on) Proposed procedures
- Tools/Implementation (Jonathan)
- Plans, Timeline and Issues
- Summary

Flowchart of Geometry/Survey/Alignment

* VMC, STV ready

Introduction

- Anything we build or touch or use needs Modeling, Survey and in-situ Alignment
- i.e. versioning
- Survey will freeze position of sensors on sectors (PXL). Help also with sector on hemisphere (PXL?). For SSD/IST will freeze position of sensors on ladder and ladder shape
- For each yearly Run the in-situ position of major detector elements needs to be rechecked

Reference System Hierarchy

- ESC/WSC attached to TPC wheel. It defines the HFT system's relation (as a whole) to TPC system
- See next slides for systems inside the HFT complex

General Layout

Reference systems - comments

- In general survey accuracy of critical components (relative pixel and/or sensor positions) expected to be better than acceptable values
- Will soon need surveyed positions of IDS targets
- to build 'ideal' position Db
- Sub-millimeter accuracies acceptable -> Tracks will fix them
- All this information is represented as matrices (position/orientation) of their center-of-gravity. These matrices are used to define Local to Global transforms

GEANT geometry can/should be synchronized with Realistic Volume hierarchy instead of the current 'patch-the-hit' scheme

- VMC environment will facilitate this

Local <-> Global transforms

OLD SSD

```
WG = Tpc2Global * GL * SG * LS * WLL;
WaferInGlobal=Tpc2Magnet *SsdinTpc*SectorInSSD*LadderInSector*WaferInLadder
```

HFT SSD
WG $=$ Tpc2Global * GL * LO \quad WLL;
WaferInGlobal=Tpc2Magnet *IDS2Tpc*Ladder2IDS*WaferInLadder

HFT IST

WG $=$ Tpc2Global * GL *PI *LO \quad WLL;
WaferInGlobal=Tpc2Magnet *IDS2Tpc*PST2IDS*Ladder2PST*WaferInLadder

HFT PXL

PG $=$ Tpc2Global *GL $\quad * \mathrm{PI} \quad$ *DP \quad * SD \quad *WLL;
PXLInGlobal=Tpc2Magnet*IDS2Tpc*PXL2IDS*DShell2PXL*Sector2DShell*(PxI-Sector)

Alignment methods (outline only)

- There are 'Global' and 'Self' Alignment methods
- Global uses mostly 'external' track information
- Self uses mostly 'internal' track information
- For HFT we propose a mix (more Self!)
- We have successful 'Global' methods already in place (SVT/SSD)
- TPC distortions, t0, 'track tof' etc is a problem
- In HFT system we have significant sensor overlap to make use of 'Self' alignment methods. We also have high precision PXL info with excellent sector rigidity, survey info, placement.
- We need to use this advantage

> We lack a hardware monitoring system. Once detectors are installed we rely on survey and alignment software

The hit-track residual Δx in the direction perpendicular to the axial strips is given by

$$
\begin{equation*}
\Delta x \equiv x_{\text {track }}-x_{\text {hit }}=\delta x+z \sin \beta+\tan \phi(\delta y+z \sin \alpha+x \sin \gamma)-f(\vec{B}, \phi) \tag{1}
\end{equation*}
$$

and for the direction parallel to the axial strips (in double sided ladders)

$$
\begin{equation*}
\Delta z \equiv z_{\text {trock }}-z_{\text {hit }}=\delta z+x \sin \beta+\tan \theta(\delta y+z \sin \alpha+x \sin \gamma) \tag{2}
\end{equation*}
$$

The simplest approach to determining the alignment parameters is to use the means of the following histograms(for the Δx case):

1. the distribution of residuals integrated over y, z, and ϕ, which gives δx directly,
2. the residual vs. z which gives $\sin \beta$,
3. the residual vs. $\tan \phi$ which gives δy,
4. the residual $/ \tan \phi$ vs. x which gives $\sin \gamma$,
5. and the residual $/ \tan \phi$ vs. z which gives $\sin \alpha$.
D.Chakraborty, J.D.Hobbs, D0 note Oct.13, 1999

The sequence to be followed for each detector is:

1) SSD Alignment: (TPC tracks Only)

Global - SSD on Global and Sectors on Global;
Local - SSD Ladders on Sectors;
2) SVT Alignment: (TPC+SSD hits on tracks)

Global - SVT on Global and Shells on Global;
Local - SVT Ladders on Shells; (Drift Velocities);
3) Consistency Check: (TPC+SSD+SVT hits on tracks)

Global;Local (ladders);Drift Velocities;

- For alignment we use "good" (well defined) tracks fitted with the primary vertex. (e.g. NFP, pt cuts)
- Use of primary tracks significantly improves precision of track predictions in HFT and reduces influence of systematics.
- Good statistics is a must (up to a point)(see example in Jonathan's talk)(50-100K hits per wafer/sensor)
- In order to minimize TPC space-charge distortions, tracking errors (mismatches) and PXL pileup we will need to use low luminosity and low-medium multiplicity data as the alignment sample
- Method is iterative since it is precise for small deviations

HFT Proposed Procedure:

Remember: PXL detector is a big asset (c.f. TPC)

1. Global Alignment of PXL

- Relative alignment of PXL sectors and halves using overlap region AND halves using Event vertex found by each half
- Relative alignment of PXL and TPC [TPC primary tracks]
- Iterative->(PXL, PXL half, sector)
- Exact sequence/interplay needs to be determined

2. Primary tracks with TPC+PXL hits

- Alignment of IST ladders with respect to PXL

3. Primary tracks with (All - SSD) hits

- Alignment of SSD ladders

4. Check

- We assume that sensors on ladder and ladders on sectors are pre-surveyed to specs3

Precision requirements for HFT alignment

- Pointing accuracy is ultimate figure of merit: DCA resolution (in bending $X Y \equiv r \phi$ plane: $\sigma_{D C A}$), and resolution in non-bending plane: σ_{z}
- $\sigma^{2}{ }_{\text {DCA }}=\sigma_{\text {vertex }}^{2}+\sigma_{\text {track }}^{2}+\sigma_{\text {MCS }}^{2}$ (the same for non-bending plane)
- primary vertex resolution: $\sigma_{\text {vertex }} \sim 3 \mu m+\left(120 \mu m / \int N_{c h}\right)$; for central Au+Au collisions turns out to be $\sim 5 \mu \mathrm{~m}$
- track pointing resolution: $\sigma_{\text {track }} \sim 1.5 \sigma_{X y}$ [in our case, where $\sigma_{X Y}$ is intrinsic detector precision ($\sim 10 \mu \mathrm{~m}$)] \oplus alignment errors
- multiple scattering (MCS): $\sigma_{M C S} \sim 20 \mu \mathrm{~m} / \beta \mathrm{p}(\mathrm{GeV} / \mathrm{c}$) (for thin PXL)

Overall mis-alignments of $<10 \mu \mathrm{~m}$ or $<\mathrm{MCS}$ are acceptable

-SVT/SSD example
-With increasing no. of fitted Si points it is improved by ~ order of magnitude.
-Contribution from tracking (constant term) is comparable with MCS @ $1 \mathrm{GeV} / \mathrm{c}$

Number of Silicon Points fitted to track	$\begin{gathered} \sigma_{X Y} \\ @ 1 \mathrm{GeV} / \mathrm{c} \\ (\mu \mathrm{~m}) \end{gathered}$
0- TPC only	3350
1-OTPC+SSD	967
$\begin{aligned} & 2-\mathrm{TPC}+\mathrm{SSD}+\mathrm{SVT} \\ & \mathrm{TP} \end{aligned}$	383
$\begin{aligned} & 3-\mathrm{TPC}+\mathrm{SSD} \\ & + \text { SVT } \end{aligned}$	296
$\begin{aligned} & 4-\mathrm{TPC}+S S D \\ & +\mathrm{SVT} \end{aligned}$	281

Tasks

- Need to finalize the PXL sensor representation in Db (prototype sector)
- Need to setup Data formats, code to deliver matrices etc
- Need to know/map the (realistic) error of every survey step
- Need to start simulations to determine alignment software performance
- Need to rework GEANT geometry synchronization (STV, VMC)
- Need to finalize SSD procedures and initialize/define IST ones
- Need to include gravitational sagging in SSD and IST (?) model
- Need to keep/use expertise around

Plans/Timeline

Some of these efforts need to go in parallel

- It will take about a month or two to setup the chain and clean up the code for all HFT subsystems (current environment)
- Includes software, Db structures, Hit, conventions
- We can do (some) tests in current environment or begin porting to VMC (with help)
- By the end of the year we would need to have defined and have established working interfaces to Survey for PXL
- Full chain ready to work with cosmics/data when available

Only then, when done, we can start looking at other packages

Summary

- The building up of a working chain is coming along
- All 3 needed efforts are moving along (Geo, Sur, Al)
- Benefited enormously from previous experience as we hope to benefit from current experience
- A lot still needs to be done
- Target to have a working chain for data beginning of the year is not unrealistic

Backup-2

References

1. "The STAR time projection chamber a unique tool for studying high multiplicity events at RHIC", M.Anderson et al., NIM A499: 652,2003.
2. "The laser system for the STAR time projection chamber", J. Abele et al., NIM A499: 692,2003.
3. "Correcting for distortions due to ionization in the STAR TPC", G. Van Buren et al.,NIM A566:22-25,2006.
4. "The STAR Silicon Vertex Tracker" A large area Silicon Drift Detector", R.Bellwied et AI., NIM A499: 640, 2003.
5. "The STAR silicon strip-detector (SSD)", L.Arnold et al., NIM 2003 A499: 652, 2003.
6. "Alignment Strategy for the SMT Barrel Detectors", D.Chakborty, J.D.Hobbs, October 13, 1999. D0 Note (unpublished)
7. "Sensor Alignment by Tracks", V.Karimaki et al.,CMS CR-2004/009 (presented at CHEP 2003)
8. http://phys.kent.edu/~margetis/STAR/HFT/Survey/SVTSmallScaleSelfAlignment.pdf

9 http://phys.kent.edu/~margetis/STAR/HFT/Survey/SVT_Alignment_JPCSL.pdf

The hit-track residual Δx in the direction perpendicular to the axial strips is given by

$$
\begin{equation*}
\Delta x \equiv x_{\text {track }}-x_{\text {hit }}=\delta x+z \sin \beta+\tan \phi(\delta y+z \sin \alpha+x \sin \gamma)-f(\vec{B}, \phi) \tag{1}
\end{equation*}
$$

and for the direction parallel to the axial strips (in double sided ladders)

$$
\begin{equation*}
\Delta z \equiv z_{\text {trock }}-z_{\text {hit }}=\delta z+x \sin \beta+\tan \theta(\delta y+z \sin \alpha+x \sin \gamma) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\Delta A & =-B \delta \phi_{n}-\delta x_{d}+v_{d n}\left[A \delta \phi_{t}-B \delta \phi_{d}+\delta x_{n}\right] \\
\Delta B & =A \delta \phi_{n}-\delta x_{t}+v_{t n}\left[A \delta \phi_{t}-B \delta \phi_{d}+\delta x_{n}\right]
\end{aligned}
$$

The simplest approach to determining the alignment parameters is to use the means of the following histograms(for the Δx case):

1. the distribution of residuals integrated over y, z, and ϕ, which gives δx directly,
2. the residual vs. z which gives $\sin \beta$,
3. the residual vs. $\tan \phi$ which gives δy,
4. the residual $/ \tan \phi$ vs. x which gives $\sin \gamma$,
5. and the residual/tan ϕ vs. z which gives $\sin \alpha$.
D.Chakraborty, J.D.Hobbs, D0 note Oct.13, 1999

Small Scale Self-Alignment with the SVT

G. Van Buren \dagger, Y. Fisyak \dagger, S. Margetis $\ddagger, ~ V . ~ P e r e v o z t c h i k o v ~ \dagger ~$
\dagger Brookhaven National Laboratory, Upton, New York 11973
\ddagger Kent State University, Kent, Ohio 44242

$\Delta A=-B \delta \phi_{n}-\delta x_{d}+v_{d n}\left[A \delta \phi_{t}-B \delta \phi_{d}+\delta x_{n}\right]$
$\Delta B=A \delta \phi_{n}-\delta x_{t}+v_{t n}\left[A \delta \phi_{t}-B \delta \phi_{d}+\delta x_{n}\right]$
A. Appendix. Jacobian of measured hit position deviation from predicted track

ones with respect to misalignment parameters.

1. Misalignment of the detector in Global Coordinate System (GCS)

- $\vec{j}=\left(j_{x}, j_{y}, j_{z}\right)$ - track direction cosimuses in GCS on measurement plane,
- $\vec{x}=(x, y, z)$ - track prediction in GCS on measurement plane,
- $\vec{x}_{h i t}=\left(x_{h i t}, y_{h i t}, z_{h i t}\right)$ - hit position in GCS on measurement plane,
- $\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)$ - direction of perpendicular to measurement plane in GCS,
- $\vec{\Delta}=\left(\Delta_{x}, \Delta_{y}, \Delta_{z}, \Delta_{\alpha}, \Delta_{\beta}, \Delta_{\gamma}\right)$ - misalignment parameters: shift and rotation with respect to $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axises, respectively.
- $\vec{x}_{\text {hit }}-\vec{x}=\mathbf{G} \cdot \vec{\Delta}=$

$$
\left(\begin{array}{cccccc}
-1+j_{x} v_{x} & j_{x} v_{y} & j_{x} v_{z} & j_{x}\left(-v_{y} z+v_{z} y\right) & -z+j_{x}\left(v_{x} z-v_{z} x\right) & y+j_{x}\left(-v_{x} y+v_{y} x\right) \\
j_{y} v_{x} & -1+j_{y} v_{y} & j_{y} v_{z} & z+j_{y}\left(-v_{y} z+v_{z} y\right) & j_{y}\left(v_{x} z-v_{z} x\right) & -x+j_{y}\left(-v_{x} y+v_{y} x\right) \\
j_{z} v_{x} & j_{z} v_{y} & -1+j_{z} v_{z} & -y+j_{z}\left(-v_{y} z+v_{z} y\right) & x+j_{z}\left(v_{x} z-v_{y} x\right) & j_{z}\left(-v_{x} y+v_{y} x\right)
\end{array}\right) \vec{\Delta}
$$

2. Misalignment of the detector in Local Coordinate System (LCS)

- $\vec{u}=(u, v, w \equiv 0)$ - track prediction in LCS on measurement plane.
- $\left(t_{u}, t_{v}\right)$ - track direction tangenses in Local Coordinate system (LCS) on measurement plane.
- $\vec{u}_{h i t}=\left(u_{\text {hit }}, v_{\text {hit }}\right)$ - hit position in LCS on measurement plane,
- $\vec{\delta}=\left(\delta_{u}, \delta_{v}, \delta_{w}, \delta_{\alpha}, \delta_{\beta}, \delta_{\gamma}\right)$ - misalignment parameters, shift and rotation with respect to local $\mathrm{u}, \mathrm{v}, \mathrm{w}$ axises, respectively.
-

$$
\vec{u}_{h i t}-\vec{u}=\mathbf{L} \cdot \vec{\delta}=\left(\begin{array}{cccccc}
-1 & 0 & t_{u} & t_{u} v & -t_{u} u & v \\
0 & -1 & t_{v} & t_{v} v & -t_{v} u & -u
\end{array}\right) \vec{\delta}
$$

- $\left(u_{h i t}-u\right)=-\delta_{u}+t_{u}\left(\delta_{w}+v \delta_{\alpha}-u \delta_{\beta}\right)+v \delta_{\gamma} ;$ $\left(v_{h i t}-v\right)=-\delta_{v}+t_{v}\left(\delta_{w}+v \delta_{\alpha}-u \delta_{\beta}\right)-u \delta_{\gamma} ;$

