# **Topological Kondo Insulators**

Maxim Dzero, University of Maryland

#### Collaborators:

Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University

- Main idea
- Kondo Insulators
- Topological insulators
- Are Kondo insulators topological? Yes



jour-ref: Phys. Rev. Lett. 104, 106408 (2010)



A lot of action takes place on the brink of localization!

- Non-Fermi Liquid phases
- > Unconventional Superconductivity
- Hidden Order: URu<sub>2</sub>Si<sub>2</sub>
- Metal-Insulator transitions





At high temperatures: free local moment  $S \approx k_B \log 2$  At low temperatures: moment is "quenched"  $C \approx k_B \frac{T}{T_K}$  single impurity Kondo effect



> At high temperatures: local moment metals

> At low temperatures: moments "quench" to form heavy fermions

#### Kondo Insulators: SmB<sub>6</sub>

MAGNETIC AND SEMICONDUCTING PROPERTIES OF SmB<sub>6</sub><sup>†</sup>

A. Menth and E. Buehler Bell Telephone Laboratories, Murray Hill, New Jersey

and

T. H. Geballe Department of Applied Physics, Stanford University, Stanford, California, and Bell Telephone Laboratories, Murray Hill, New Jersey (Received 21 November 1968)





FIG. 2. Reciprocal molar susceptibility of  $\text{SmB}_6$  as a function of temperature.

Magnetic susceptibility flattens out below 100 K

Band structure calculations: mixed valence behavior

$$n_f \simeq 0.7$$

## Kondo Insulators: Ce<sub>3</sub>Bi<sub>4</sub>Pt<sub>3</sub>

- Hybridization gap arises due to interaction between 4f and conduction band electrons
- Gap is suppressed by doping: disordered Kondo Lattice
- Real part of the optical conductivity: disappearance of the spectral weight below 100 K.



Ce  $(f^1)$  in tetragonal crystal field environment

> strong spin-orbit  $f^1$ : S = 1/2, L = 3, J = L - S = 5/2coupling



Actual position of the Kramers doublets is determined experimentally (XAFS)

# Kondo insulators: theory

• Anderson model:

$$\hat{H} = \sum_{\mathbf{k},\alpha} \xi_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + \sum_{j\alpha} \left[ V \psi_{j\alpha}^{\dagger} f_{j\alpha} + \text{h.c.} \right] + \sum_{j\alpha} \left[ \varepsilon_{f}^{(0)} n_{f,j\alpha} + \frac{U_{f}}{2} n_{f,j\alpha} n_{f,j\overline{\alpha}} \right]$$

$$\psi_{j\alpha} = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \Phi_{\alpha\sigma}(\hat{\mathbf{k}}) e^{-i\mathbf{k}\cdot\mathbf{x}_j} c_{\mathbf{k}\sigma}$$
f-electron
form factor

Hybridization





Strong spin-orbit coupling is present on the level of interaction between *c*- and *f*-electrons

# Kondo insulators: theory

• Anderson model:

$$\begin{split} \hat{H} &= \sum_{\mathbf{k},\alpha} \xi_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + \sum_{j\alpha} \left[ V \psi_{j\alpha}^{\dagger} f_{j\alpha} + \text{h.c.} \right] + \sum_{j\alpha} \left[ \varepsilon_{f}^{(0)} n_{f,j\alpha} + \frac{U_{f}}{2} n_{f,j\alpha} n_{f,j\overline{\alpha}} \right] \\ \psi_{j\alpha} &= \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \Phi_{\alpha\sigma}(\hat{\mathbf{k}}) e^{-i\mathbf{k}\cdot\mathbf{x}_{j}} c_{\mathbf{k}\sigma} \\ \int \text{form factors:} \quad \left[ \Phi_{\Gamma \mathbf{k}} \right]_{\alpha\sigma} &= \sum_{m} \langle \Gamma \alpha | jm \rangle \langle jm | \mathbf{k}\sigma \rangle \\ \text{Matrix element between the Bloch and Wannier states} \\ \text{tight-binding } \left[ \Phi_{\Gamma \mathbf{k}} \right]_{\alpha\sigma} &= \sum_{m \in [-3,3]} \left\langle \Gamma \alpha | 3m, \frac{1}{2}\sigma \right\rangle \frac{1}{Z} \sum_{\mathbf{R} \neq 0} Y_{M}^{3}(\hat{\mathbf{R}}) e^{i\mathbf{k}\cdot\mathbf{R}} \end{split}$$

Spin-orbit coupling is present on the level of Interaction between c- and f-electrons

# Kondo insulators: theory

correlation functions

$$\mathcal{G}_{cc}(\mathbf{k}, i\omega) = \left[i\omega - \xi_{\mathbf{k}} - \frac{|V(\mathbf{k})|^2}{i\omega - \varepsilon_f^{(0)} - \Sigma_f(\mathbf{k}, i\omega)}\right]^{-1} \qquad \text{f-level renormalization} \\ \mathcal{G}_{ff}(\mathbf{k}, i\omega) = \left[i\omega - \varepsilon_f^{(0)} - \Sigma_f(\mathbf{k}, i\omega) - \frac{|V(\mathbf{k})|^2}{i\omega - \xi_{\mathbf{k}}}\right]^{-1} \qquad \text{f-level renormalization} \\ \text{due to Hubbard-U} \\ \text{interaction} \end{cases}$$

- approximations:
  - neglect self-energy dispersion: Kondo limit
  - ignore the physics at high Matsubara frequencies
- hybridization amplitude

$$\tilde{V}(\mathbf{k}) = \sqrt{Z}V(\mathbf{k})$$

$$\varepsilon_f = Z_{f} \varepsilon_f^{(0)} + \Sigma_f (\mathbf{k}, 0)]$$

$$\mathbf{Z} = \left[1 - \frac{\partial \Sigma_f \mathbf{X}, \omega}{\partial \omega}\right]_{\omega=0}^{-1}$$

## Mean-field theory: effective Hamiltonian

$$\mathcal{H}_{mf}(\mathbf{k}) = \begin{pmatrix} \xi_{\mathbf{k}} \underline{1} & \tilde{V} \Phi_{\Gamma \mathbf{k}}^{\dagger} \\ \tilde{V} \Phi_{\Gamma \mathbf{k}} & \varepsilon_{f} \underline{1} \end{pmatrix}$$

renormalized position of the f-level

Qualitative description





 $\Gamma_{7^{+}}$ 



Linear combination of any of two gapless shapes with the fully gaped one yields non-vanishing hybridization gap. TKI with nodes?

## **Quantum Hall Kondo insulators**

P. Ghaemi & T. Senthil (2007); M. Dzero et al. (2010)

• 2D model of the Kondo insulator

$$H = \sum_{\mathbf{k}} \left[ \frac{1}{2} (\epsilon_{\mathbf{k}} + \varepsilon_f) + \vec{m}_{\mathbf{k}} \cdot \vec{\tau} \right]$$

> 
$$\mathbf{m}_{\mathbf{k}} = \left(-\alpha V \hat{k}_x, \alpha V \hat{k}_y, \frac{1}{2}(\epsilon_{\mathbf{k}} - \varepsilon_f)\right)$$
 maps torus (BZ) to a sphere

Current operator
$$j_{\mu} = \frac{\partial}{\partial k_{\mu}} H$$

$$\sigma_{xy} = \frac{e^2}{4\pi h} \int d^2k \frac{\vec{m} \cdot (\partial_x \vec{m} \times \partial_y \vec{m})}{|\vec{m}|^3}$$



chiral mode exists even in the absence of external magnetic field

#### 2D Kondo insulator has a quantized Hall conductivity

## **Topological insulators**

M. Z. Hasan & C. L. Kane, "Topological Insulators", RMP (2010).

Four bulk  $Z_2$  invariants determine whether the surface states are protected (even or odd # of points)

> Simplest 3D TI: stack of layers



three indices (Miller indices: orientation of the layers)

Strong TI: odd number of Dirac points enclosed by the FS

# Surface states as a function of surface crystal momentum





## **Topological insulators**

L. Fu & C. Kane, "Topological Insulators with Inversion Symmetry", PRB 76, 45302 (2007).

#### Response to a fictitious applied magnetic field



> 2D: Flux plays the role of the edge crystal momentum k<sub>x</sub>

3D: two fluxes corresponding to two components of the surface crystal momentum

Z<sub>2</sub> invariants are computed from the parity of the occupied bands: change in time reversal polarization due to changes in bulk Hamiltonian

$$w[\Gamma_i]_{mn} = \langle u_{m-k} | \Theta | u_{nk} \rangle \qquad \qquad \delta_i = \frac{\sqrt{\det[w(\Gamma_i)]}}{\Pr[w(\Gamma_i)]} = \pm 1$$

#### **Topological insulators: invariants**

L. Fu & C. Kane, "Topological Insulators with Inversion Symmetry", PRB 76, 45302 (2007).

> topological structure is determined by parity at high symmetry points

• parity 
$$P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 • time-reversal  $\mathcal{T} = \begin{pmatrix} i\sigma_y & 0 \\ 0 & i\sigma_y \end{pmatrix}$ 

$$\checkmark H_{mf}(\mathbf{k}) = PH_{mf}(-\mathbf{k})P^{-1} \quad \checkmark [H_{mf}(\mathbf{k})]^T = \mathcal{T}H_{mf}(-\mathbf{k})\mathcal{T}^{-1}$$

P-inversion odd form factor vanishes @ high symmetry points

$$H_{mf}(\mathbf{k}_m) = \frac{1}{2}(\xi_{\mathbf{k}_m} + \varepsilon_f)\underline{1} + \frac{1}{2}(\xi_{\mathbf{k}_m} - \varepsilon_f)P$$

 $\geq$  Z<sub>2</sub> invariants are characterized by the parity eigenvalues:

$$\delta_m = \operatorname{sgn}(\xi_{\mathbf{k}_m^*} - \varepsilon_f)$$

$$\delta_m = \operatorname{sgn}(\xi_{\mathbf{k}_m^*} - \varepsilon_f)$$

## **Topological Kondo insulators**

primitive unit cell (EASY!)  $Z_2$  invariants: 1 "strong"  $I_{STI} = \prod_{m=1}^8 \delta_m = \pm 1$ 3 "weak"  $I_{WTI}^j = \prod_{\mathbf{k}_m \in P_j} \delta_m = \pm 1$ 

"phase diagram": tight binding  $\xi_{\mathbf{k}} = -2t(\cos k_x + \cos k_y + \cos k_z)$ 



jour-ref: Phys. Rev. Lett. 104, 106408 (2010)

# **Topological Kondo insulators**

bcc unit cell

#### Z<sub>2</sub> invariants:

1 "strong" 
$$I_{STI} = (-1)^{w_{P_j} + w_{P'_j}}$$
  
3 "weak"  $I_{WTI}^{(j)} = (-1)^{w_{P_j}}$ 



"phase diagram" does not depend on the underlying type of the unit cell



#### Are existing Kondo insulators weak or strong TI?



#### Are existing Kondo insulators weak or strong TI?



### CeNiSn: weak topological insulator?

T. Takabatake et al. PRB (1990)



## Summary

- Ce-based Kondo insulators are weak topological insulators: unstable to disorder
- Strong Topological Insulators in f-electron systems are most likely to be observed in mixed-valence (n<sub>f</sub> ≈30%) materials
- Strong spin-orbit coupling due to hybridization of conduction electrons with f-electrons
- We expect fundamentally novel type of metallic states on the surface of the STI



