Heavy Ion Collisions + A Trillion Degrees in the Shade

Akron Physics Club, Oct 27, 2008

<u>Outline</u>

- Why collide heavy nuclei at high energy?
- RHIC: Machine and experiments
- Physics from the first ten years of RHIC
 - Soft physics
 - Hard physics

"In high-energy physics we have concentrated on experiments in which we distribute a higher and higher amount of energy into a region with smaller and smaller dimensions.

In order to study the question of 'vacuum', we must turn to a different direction; we should investigate some 'bulk' phenomena by distributing high energy over a relatively large volume."

T.D. Lee (Nobel Laureate – Parity violation) Rev. Mod. Phys. 47 (1975) 267.

Quantum Chromodynamics

 Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter.
 Gluons hold quarks together to from hadrons:

meson

baryon

Gluons and quarks, or partons, typically exist in a color singlet state: *confinement*.

An analogy... and a difference!

An atom has substructure – we want to study its constituents and their interactions

electron

Separate constituents: EM interaction vanishes & we can study constituents/interactions separately

Imagine our understanding of atoms or QED if we could not isolate charged objects!!

Confinement: fundamental & crucial (but *not* well-understood!) feature of QCD colored objects (partons) have ∞ energy in normal vacuum

But how?

- Use feature of asymptotic freedom
 - Bring nucleons as close as possible
 - Strong force gets weaker
 - Partons would be free to move around
- A 'phase transition' to parton 'plasma' should occur

Phase Transitions

• What is a phase transition ?

A process in which a system changes, over a negligible range of temperature or pressure, from one state into another which has different properties.

P.G.Jones@hham.ac.uk

Collective Phenomenology & QGP

Present understanding of Quantum Chromodynamics (QCD)

- heating
- compression
- → deconfined color matter !

Qu**HydCibaio**:Meittisma de**(confined)**!

QCD on Lattice

The Phase Diagram

TWO different phase transitions at work!

High-energy Nuclear Collisions

ACRE Downey

Crossing a New Threshold

Relativistic Heavy Ion Collider

Manhattan

REVIEW OF SPECULATIVE 'DISASTER SCENARIOS' AT RHIC. W. Busza, R.L. Jaffe, J. Sandweiss, F. Wilczek, Sep 1999

Rev.Mod.Phys.72 (2000) and hep-ph/9910333

RHIC & its experiments

The STAR experiment

STAR Main Detector Magnet EMC СТВ EEM TPC ZDC FTPC FTF SVT -

The STAR Detector

1st year (130 GeV), 2nd year (200 GeV)

Older tracking detectors: 2-D projections

Getting z-coord from drift time in TPC

STAR ZDC

>Each of the RHIC experiments has a pair of Zero Degree Calorimeters for beam monitoring, triggering, and locating interaction vertices.

>ZDCs detect neutrons emitted along beam directions and measure their total energy (multiplicity).

Baseline ZDCs have no <u>transverse segmentation</u>, which motivates upgrade.

STAR STRANGENESS

How to Observe QGP in Nuclear Collisions

- Nuclear collisions are highly dynamic, no first-principles theory
- Emphasis shifts Experience and Surprises
- Some tools to distinguish deconfined QGP from dense hadron gas:
 - High energy density: interaction of jets with medium
 - High temperature: direct photons
 - Quasi-equilibrium at early stage: flow
 - Rapid equilibration, mass shifts: strangeness enhancement
 - Threshold behavior: must be able to turn effects off
 - $\Rightarrow \sqrt{s}$, centrality of collision, mass of system
 - ⇒Need p-p, d-Au reference data or central/peripheral event selection

QGP must emerge as most reasonable picture from many different observables simultaneously

Event (Centrality) Selection

Soft Physics: $p_T < 2 \text{ GeV/c}$

Goal: Characterize the bulk of the event

What do we know (or we think we do)?

• High apparent energy density ~5 GeV/fm3 (lattice phase transition ~1 GeV/fm3, cold matter ~ 0.16 GeV/fm3) PRL 86, 112303 (2001)

Bjorken Energy Density

- Bjorken '83: ideal 1+1 D relativistic hydrodynamics
- boost invariance $\Rightarrow \eta \sim 0$

$$\varepsilon = \frac{1}{\pi R^2 \tau} \frac{dE_T}{dy} \approx \frac{1}{\pi R^2 \tau} \langle p_T \rangle \frac{3}{2} \frac{dN_{ch}}{d\eta} \quad (R \sim A^{1/3}, \tau = 1 \text{ fm/c})$$

Central Au+Au @ $\sqrt{s_{NN}}$ =130:

- PHENIX E_T : $\epsilon = 4.6 \text{ GeV/fm}^3$ (nucl-ex/0104015)
- STAR charged particles: $\epsilon \sim 4.5 \text{ GeV/fm}^3$

Compare NA49 Pb+Pb@SPS: $\varepsilon \sim 3 \text{ GeV/fm}^3$ ($\tau = 1 \text{ fm/c}$)

Critical issues:

- Has equilibrium been achieved? (i.e. hydrodynamics valid?)
- If so, what is formation time τ ?

Soft Physics: $p_T < 2 \text{ GeV/c}$

Goal: Characterize the bulk of the event

What do we know (or we think we do)?

•High apparent energy density ~5 GeV/fm3 (lattice phase transition ~1 GeV/fm3, cold matter ~ 0.16 GeV/fm3) PRL 86, 112303 (2001)

•Chemical equilibrium(?): T~175 MeV, μ_B <40 MeV \Rightarrow near lattice phase boundary PRC 66, 061901(R) (2002); PRL 89, 092301 (2002); PRC 65, 041901(R) (2002); nucl-ex/0211024; nucl-ex/0206008

Simple thermal model:

- Partition fn, spectrum of hadrons
- Parameters T, μ_B , μ_s
- Fit to ratios of antiparticle/particles: π , K, p, Λ , Ξ , K^*_0

Yields Ratio Results

200 GeV ¹⁹⁷Au + ¹⁹⁷Au central collision

- In central collisions, thermal model fit well with $\gamma_s = 1$. The system is thermalized at RHIC.

- Short-lived resonances show deviations. There is life after chemical freezeout. RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184.

Phase Diagram at Chemical Freezeout

- parameters near phase boundary
- (strangeness) equilibration time for hadronic gas very long (~50 fm/c)
- do we have more direct evidence of early equilibration?

Soft Physics: $p_T < 2 \text{ GeV/c}$

Goal: Characterize the bulk of the event

What do we know (or we think we do)?

•High apparent energy density ~5 GeV/fm3 (lattice phase transition ~1 GeV/fm3, cold matter ~ 0.16 GeV/fm3) PRL 86, 112303 (2001)

•Chemical equilibrium: T~175 MeV, μ_B <40 MeV \Rightarrow near lattice phase boundary PRC 66, 061901(R) (2002); PRL 89, 092301 (2002); PRC 65, 041901(R) (2002); nucl-ex/0211024; nucl-ex/0206008

• Hydrodynamics works well PRL 90, 032301 (2003); PRC 66, 034904 (2002); PRL 89, 132301 (2002); PRL 87, 182301 (2001); PRL 86, 402 (2001)

(With some trouble with HBT correlations)

Geometry of Heavy Ion Collisions

Non-central Collisions

Elliptic Flow

Anisotropic flow: v1, v2, v4

Directed flow Elliptic flow

Time evolution at finite b

Time evolution at finite b

1) Superposition of independent NN:

momenta pointed at random relative to reaction plane

2) Evolution as a **bulk <u>system</u>**

Pressure gradients (larger in-plane) push bulk "out" \rightarrow "flow"

more, faster particles seen in-plane

Time evolution at finite b

1) Superposition of independent NN:

momenta pointed at random relative to reaction plane

2) Evolution as a **bulk <u>system</u>**

Pressure gradients (larger in-plane) push bulk "out" \rightarrow "flow"

more, faster particles seen in-plane

Resulting azimuthal distributions

Resulting azimuthal distributions

Elliptic flow

observed momentum anisotropy is largely elliptic deformation; its amplitude is denoted v2 RHIC v₂ reaches large values yielded by hydro

(unlike lower energies)

Hydrodynamic calculation of system evolution

Elliptic flow - sensitive to early stages

Zhang, Gyulassy, Ko, Phys. Lett. **B 455,** 45 (1999)

Azimuthal anisotropy of leading hadrons

p_T<2 GeV: detailed agreement with hydrodynamics
p_T>4 GeV: flattening of data

Elliptic flow - sensitive to QGP/Hadronic EOS

The bottom line:

It produces copious mesons and baryons with yield ratios and flow properties that suggest their formation via coalescence of valence quarks from a hot thermal bath.

Viscosity and the Perfect Fluid

Caption: The viscosity to entropy ratio versus a reduced temperature.

Lacey et al. PRL **98**:092301(07) hep-lat/0406009 hep-ph/0604138 The universal tendency of flow to be dissipated due to the fluid's *internal friction* results from a quantity known as the **shear viscosity**. All fluids have non-zero viscosity. The larger the viscosity, the more rapidly small disturbances are damped away.

Quantum limit: $\eta/s_{AdS/CFT} \sim 1/4\pi$

pQCD limit: ~1

At RHIC: ideal ($\eta/s = 0$) hydrodynamic model calculations fit to data \Rightarrow

Perfect Fluid at RHIC?!

APS top physics story in 2005

Soft Physics: $p_T < 2 \text{ GeV/c}$

Goal: Characterize the bulk of the event

What do we know (or we think we do)?

•Baryon/antibaryon ratios ~0.6-1 close to baryon-free PRL 86, 4778 (2001)

• High apparent energy density ~5 GeV/fm3 (lattice phase transition ~1 GeV/fm3, cold matter ~ 0.16 GeV/fm3) PRL 86, 112303 (2001)

• Chemical equilibrium: T~175 MeV, μ_B <40 MeV \Rightarrow near lattice phase boundary PRC 66, 061901(R) (2002); PRL 89, 092301 (2002); PRC 65, 041901(R) (2002); nucl-ex/0211024; nucl-ex/0206008

• Hydrodynamics works well PRL 90, 032301 (2003); PRC 66, 034904 (2002); PRL 89, 132301 (2002); PRL 87, 182301 (2001); PRL 86, 402 (2001) (With some trouble with HBT correlations)

• Explosive dynamics - Huge radial flow

Overall picture: system appears to be in equilibrium but explodes and hadronizes rapidly \Rightarrow high initial pressure

Low-p_T dynamics — one (naïve?) interpretation: rapid evolution and a "flash"

Disclaimer: all numbers (especially time) are approximate

Hard Physics: $p_T > 2 \text{ GeV/c}$

Goal: Penetrating probes

What do we know so far?

• Leading Hadron Suppression in Central Collisions PRL 89, 112303 (2001)

New with Heavy Ions at RHIC/LHC

- New opportunity for heavy ion physics \rightarrow *Hard Parton Scattering*
 - $\sqrt{s_{NN}} = 130 \text{ GeV}$ at RHIC vs $\sqrt{s_{NN}} = 17 \text{ GeV}$ at CERN SPS
- Jets and mini-jets (from hard-scattering of partons)
 → 30 50 % of particle production
 - \rightarrow high p_t leading particles
 - \rightarrow azimuthal correlations
- Extend into perturbative regime
 - Calculations reliable
- Scattered partons propagate through matter radiate energy (~ GeV/fm) in colored medium
 - interaction of parton with partonic matter
 - suppression of high p_t particles aka "parton energy loss" or "jet quenching"
 - suppression of angular correlation

Energy Loss in A+A Collisions

Leading Hadrons in Fixed Target Experiments

Leading Hadron Suppression: Data

It is highly opaque to colored probes- quarks and gluons - but not to photons

Quark Masses

- Higgs mass: electro-weak symmetry breaking. (current quark mass)
 QCD mass: Chiral symmetry breaking. (constituent quark mass)
- Strong interactions do not affect heavy-quark masses.
- Important tool for studying properties of the hot/dense medium at RHIC.
- Test pQCD predictions at RHIC, including the effect of color factors.

Heavy Flavor

Hard Physics: $p_T > 2 \text{ GeV/c}$

Goal: Penetrating probes

What do we know so far?

- How hard is hard?
- Leading Hadron Suppression in Central Collisions PRL 89, 112303 (2001)
- Elliptic flow saturation with p_T PRL 90, 032301 (2003); nucl-ex/0210026
- Even with strange mesons/baryons
- Disappearance of away side jet in central Au+Au collisions nucl-ex/0210033

Ansatz: Au+Au = p+p + Elliptic Flow

Suppression of jets on the Far Side...

Bottom line

In central Au+Au collisions: hadrons are suppressed and back-to-back 'jets' are disappeared. Different from p+p and d+Au collisions.

Energy density at RHIC: $\mathcal{E} > 5 \text{ GeV/fm}^3 \sim 30 \mathcal{E}_0$ Parton energy loss:Bjorken("Jet quenching")Gyulassy & Wang

• • •

γ-Jet: Golden Probe of QCD Energy Loss

QCD analog of Compton Scattering

- γ emerges unscathed from the medium
 - This probe is valuable for comparison with di-hadron correlations
 - It provides fully reconstructed kinematics: measure real fragmentation function D(z)

First steps to precision study with high luminosity at RHIC

See J. Kapitan, P156 The next step Full prototype TPC sector now in operation and working flawlessly first reaction (first reaction (first

Collaboration Plan:

Increase of DAQ rate to1000 times design by Run 9 leveraging CERN/ALICE Altro chip development (thank you)

Construction of HFT in time for full operation in Run 12 (Fall 2011)

END