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Some useful scales

Thermal de-Broglie wave length :

λ(T ) =

(

2π~
2

mkBT

)1/2

Delta-shell range : a Dilution parameter : na3

Delta-shell scattering length :

asl =
ag

g − 1
; Unitary limit : g = 1

Hard-sphere like transport (diffusion, viscosity & thermal conductivity)
coefficients :

D̃ =
3
√

2

32

~

mna3
, η̃ =

5
√

2

32

~

a3
, and κ̃ =

75

64
√

2

~kB

ma3
.
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Overview of transport properties
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The Boltzmann Equation

(

∂

∂t
+

p1

m
· ∇r + F · ∇p1

)

f1 =

∫

d3p2 d3p′1 d3p′2 δ4(Pf − Pi)

× |Tfi|2 (f ′

2f
′

1 − f2f1)

• Nonlinear integro-differential equation for f1

• Except in rare cases, analytical solutions not available

The collision integral on the right hand side can be cast as

C =

∫

d3p2 dΩ |v1 − v2| (dσ/dΩ) (f ′

2f
′

1 − f2f1)

• Modifications due to Pauli supression or Bose enhancement can also
be incorporated
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Variables of hydrodynamics

Basic variables: f ≡ f(r,v, t)

〈A〉 =

∫

d3p Af/

∫

d3p f (Expectation value of A)

v(r, t) = 〈v〉 (Average velocity)

ρ = m

∫

d3v f (mass density)

θ(r, t) =
1

3
m 〈|v − u|2〉 (heat flux)

Pij = ρ 〈(vi − ui) (vj − uj)〉 (Pressure tensor)
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Dissipative hydrodynamic equations

∂ρ

∂t
+ ∇ · (ρu) = 0 (continuity)

(

∂

∂t
+ u · ∇

)

u =
F

m
− 1

ρ

(

P − η

3
∇ · u

)

+
η

ρ
∇2u

(Navier − Stokes equation)

(

∂

∂t
+ u · ∇

)

θ = − 1

cv

(∇ · u)θ +
κ

ρcv

∇2θ

(Heat conduction)

15/31



16/31



17/31



Analysis for particles with spin

q
(n)
(s) =

s + 1

2s + 1
q
(n)
Bose +

s

2s + 1
q
(n)
Fermi, for integer s ,

q
(n)
(s) =

s + 1

2s + 1
q
(n)
Fermi +

s

2s + 1
q
(n)
Bose, for half-integer s .

Here, we will present results for the case of spin-1/2 particles only.
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I For constant cross sections, the ω− integrals are T−independent;
as a result [η]1,2 ∝ T 1/2 as λ(T ) ∝ T−1/2.
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Viscosity vs inverse scattering length
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Asymptotic trends of viscosity

η

η̃
→























(

1−g
g

)2 (

T/T̃
)1/2

for g 6= 1, 3

6π
(

T/T̃
)3/2

for g = 1

16
111

(

T/T̃
)1/2

for g = 3 .

Characteristic temperature:

T̃ ≡ 2π~
2

kBma2
or

T

T̃
=

(a

λ

)2
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I For constant cross sections, the ω− integrals are T−independent;
as a result [D]1,2 ∝ T 1/2 as λ(T ) ∝ T−1/2.
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Diffusion vs temperature
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Asymptotic trends of diffusion

D
D̃

→ 2

(

1 − g

g

)2
√

T

T̃
for g 6= 1, 3 .

D
D̃

→











8π
(

T/T̃
)3/2

for g = 1

6
13

(

T/T̃
)1/2

for g = 3 .

Characteristic temperature:

T̃ ≡ 2π~
2

kBma2
or

T

T̃
=

(a

λ

)2
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Effective physical volumes

g mnD η mnD/η

1
3
√

2π

4

~

λ3

15
√

2π

16

~

λ3

4

5
= 0.80

3
9
√

2π

104

~

λ a2

5
√

2π

111

~

λ a2

999

520
= 1.92

6= 1, 3
3
√

2π

8

~

λ a2
sl

5
√

2π

16

~

λ a2
sl

6

5
= 1.20

Table 1: First order coefficients of diffusion (times mn),

shear viscosity, and their ratios for T � T̃ for select g′s .
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Diffusion to viscosity ratio
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Viscosity, η, to entropy density, s, ratio

I Is there a lower limit to η/s ?

I First proposal: η/s ≥ (4π)−1 (~/kB).
Kovtun, Son & Starinets (2005)

I Recent works indicate even lower limits !
Brigante et al. (2008), Buchel et al. (2008),
Kats & Petrov (2009)

I What does the dilute delta-shell gas yield ?

I Is there anything deep in such a limit ?
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Entropy density of a dilute delta-shell gas

s = (5/2 − ln(nλ3) + δs(T ) na3)nkB ,

δs(T ) =

(

a2(T )

2
− T

da2(T )

dT

) (

λ

a

)3

,

The second virial coefficient (that includes interactions)

a2(T ) = ∓ 2−5/2 − 23/2
∑

l

′

(2l + 1)

×
(

e−El/(kBT ) +
1

π

∫

∞

0

dx
∂δl

∂x
e−ξ(T )x2

)

,

where the prime indicates summation over even l’s for Bosons (−) and
odd l’s for Fermions (+), El is the energy of the bound state with
angular momentum l and ξ(T ) = (λ/a)2/(2π).
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Viscosity to entropy density ratio
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Lessons learned from the delta-shell gas
I Our analysis is restricted to the dilute gas limit, in which two

particle interactions dominate but with scattering lengths that can
take various values including infinity .

I Even at the two-body level, a rich structure in the temperature
dependence and the effective physical volume responsible for the
overall behavior of the transport coefficients are evident.

I The role of resonances in reducing the transport coefficients are
amply delineated.

I Improved estimates of η and s have large roles on the ratio η/s !

I In the dilute gas limit, η/s for the delta-shell gas remains above
(4π)−1

~/kB .

I Matching our results to those of intermediate and extreme
degeneracies which highlight the additional roles of superfluidty
and superconductivity reveals the extent to which many-body
effects play a crucial role.
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