Effects of nuclear Deformation in *Heavy Ion Collisions*.

Peter FILIP

Institute of Physics, Slovak Academy of Sciences Bratislava 845 11, Slovak Republic

Kent State University April 10th, 2009

OUTLINE:

• Introduction to Nuclear Deformation

 \rightarrow many interesting pieces, oblate, prolate...

• Collisions of deformed nuclei

 \rightarrow eccentricity, elliptic flow, fluctuations....

• Conclusions...

Woods-Saxon Density.

$$\rho_w(x, y, z) = \frac{\rho_o}{1 + e^{(r - R_o(1 + \beta_2 Y_{20} + \beta_4 Y_{40}))/a}}$$
Deformation parameters:
quadrupole: $\beta_2 \rightarrow [3\cos^2(\theta) - 1] \approx Y_{20}$
octupole: $\beta_3 \rightarrow [5\cos^3(\theta) - 3\cos(\theta)]$
higher order: $\beta_4 \rightarrow [35\cos^4(\theta) - 30\cos^2(\theta) + 3] \approx Y_{40}$
Highest order: $\beta_6 \rightarrow$ nucl-ex/0106023

• see old ref. Rev.Mod.Phys.30 pp.498-506 (1958)

Oblate/prolate shape: β_2

• $\beta_2 > 0 \rightarrow$ rugby-ball (prolate) shape. Ne-20, Cu-63, Sm, W, U..

• $\beta_2 < 0 \rightarrow$ oblate (squeezed) shape: Si, As, Ge, Au Si-28 Si-29 Si-30

 $\beta_2 = -0.47$ $\beta_2 = -0.3$ $\beta_2 = 0.0$

Higher-order deformation: β_4

Octupole deformation: β_3

• Pear-shaped deformation

 \rightarrow under investigation, unstable to α -decay

• Two candidates: Sm-149 and Rn-222

Size comparison.

Spherical nuclei = closed shells of nucleon orbitals (magic numbers).

Radius increases as $A^{1/3}$ [assuming constant baryon density].

Shape comparison I.

Ge-70 Sm-154 As-75

Shape comparison II.

W-186 Ga-71 Tm-169

Other Pictures I.

Cf-251 and Th-232

[Cf-251 in RHIC = 89800 Years half-life at 100GeV/n; for 10^{13} / beam ≈ 1 decay/6s]

Other Pictures II.

Ho-165 \rightarrow \leftarrow Pb-207

(long-polarized)

Other Pictures III.

Si-28
$$\rightarrow \leftarrow$$
 Au-197 (AGS)

EXOTICS.

Dubnium(105)-268 (16hours)

Americium(95)-240m (1ms)

Reality: RHIC Au+Au 200GeV/n

Au-197 nucleus Deformation ?

Yes: has quadrupole moment Q=0.59 barn [Phys.Rev.A73(2006)022510] Prediction β_2 : [1] P.Moller et al. At. Data Nucl. Data Tables 59 (1995) 185. Experiment: [2] C.Nair et al. (Giant Dipole Resonance ¹⁹⁷Au) arXiv:08114746.

Other deformed nuclei at RHIC? Yes: Cu-63 & U-238.

Elliptic flow at RHIC energies: \rightarrow origin: the initial spatial asymmetry.

For deformed nuclei \rightarrow initial eccentricity is affected !!! \rightarrow elliptic flow is affected.

Optical Glauber Model^{*}

- Using Deformed Woods-Saxon density: $\rho_w(x, y, z) = \frac{\rho_o}{1 + e^{(r - R_o(1 + \beta_2 Y_{20} + \beta_4 Y_{40}))/a}}$
- Projections $[\theta, \phi]$ in transversal plane \rightarrow
- From the overlap of colliding nuclei:
 - Baryon density
 - N_{part}: participant density $\rho_{part}(x, y)$
 - N_{coll}: $\rho_{coll}(x, y)$ binary collisions density
- Obtain eccentricity $\varepsilon = \frac{\sqrt{(\sigma_y^2 \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}$
- Multiplicity:

$$dN_{\rm ch}/d\eta = (1-x) \cdot n_{pp} \frac{N_{\rm part}}{2} + x \cdot n_{pp} N_{\rm coll}$$

* Phys. of Atom. Nucl. 71 (2008) 1609

Distributions Npart, Ncoll, Nch from Opt.GM

Two-component dN_{ch}/d η : Phys.Lett.B507(2001)121; $n_{pp} = 2.29$ and x = 0.13

Eccentricity in collisions of prolate nuclei.

Technical detail: Random orientation of nucleus.

Random orientation:

= random distribution of points where main axis (spin) crosses the surface of the sphere.

Probability is proportional to the area.

Area dS corresponding to $d\theta d\phi$ is:

 $dS = R \sin(\theta) d\theta d\phi$

 $P(\theta) = \sin(\theta)/2 \ (normalized to 1.)$ $P(\phi) = const. \ (random \phi angle)$

 \rightarrow angle θ is not random.

Random orientation means random φ , and sin(θ) distributed θ angle.

Eccentricity in collisions of oblate nuclei.

Zero eccentricity at b=3 fmand non-zero ε for b=0 fm

Eccentricity fluctuates again !

OBSERVATION:

Deformation of nuclear shape

<u>increases</u>

$\varepsilon \rightarrow v_2 = Elliptic flow$ **fluctuations**.

(at given fixed collision centrality).

What happens with < ε > due to deformation in UU & AuAu ?

- In noncentral collisions $< \varepsilon >$ stays unchanged
 - \rightarrow central coll: Increased $< \epsilon >$ due to deformation.

+ additionally, deformation increases eccentricity fluctuations.

UU collisions from Opt.GM: $dNch/d\eta$

→ Cusp in $<\epsilon>$ for very-central collisions (large $dN_{ch}/d\eta$).

Highest multiplicity: $dN_{ch}/d\eta$ is observed for longitudinaly polarized, central b=0 fm collisions. \rightarrow eccentricity cusp \leftarrow

Why (dNch/dη) sensitive to oriention ?

 \rightarrow dNch/d η depends on orientation due to NN_{coll}

$$dN_{\rm ch}/d\eta = (1-x) \cdot n_{pp} \frac{N_{\rm part}}{2} + x \cdot n_{pp} N_{\rm coll}$$

 N_{part} is **not** sensitive to orientation V_2 [Npart] not interesting.

 \rightarrow Study: **V**₂ [dNch/dη] (in central collisons)!

Glauber Monte Carlo Simulation* [*] QM09 poster (LBNL + JINR)

Eccentricity fluctuations: $\sigma_{\varepsilon} = \sqrt{\sigma_{\beta_2}^2 + \tilde{\sigma}_{\varepsilon}^2}$

 \rightarrow finite number of interacting nucleons: $\tilde{\sigma}_{\varepsilon}$

 \rightarrow ground-state deformation of coll. nuclei: σ_{β_2}

Quark Matter 2009

Effects predicted by Optical Glauber Model \rightarrow <u>confirmed.</u>

Comparison of Entropy Density in Au+Au vs. U+U

β_4 deformation Parameter for ²³⁸U

- Moller et al. [1] prediction for ²³⁸U is: $\beta_4 = +0.093$
 - \rightarrow spatial distribution of nucleons is modified
 - \rightarrow participant eccentricity is modified
 - \rightarrow final v_2 strength can be modified ! [hydro calc. needed].

U+U participant density in transversal plane [fm⁻²].

[1] Moller et al. At. Data Nucl. Data Tables 59, 185 (1995)

Polarization of ²³⁸U beam? No way.

Spin of ${}^{238}U = 0^+$ Magnetic moment $\mu = 0$ Quadrupole moment: unknown.

\rightarrow consider ²³⁸U beam unpolarized.

CONCLUSIONS:

- Nuclei collided at AGS/SPS/RHIC are deformed: \rightarrow Si-28, Cu-63, In-115, Au-197, (U).
- Elliptic flow is affected in deformed nuclei collisions:
 - $\label{eq:eccentricity: < $\epsilon > increased in Au+Au central \\ + cusp for Ho+Ho and U+U predicted $$$
 - \rightarrow fluctuations: $\sigma(\epsilon)$ increased !
- β_4 deform. parameter for ²³⁸U is important !
- Study of deformation effects is needed to understand properties of partonic matter created at RHIC.