Effects of nuclear Deformation in

 Heavy Ion Collisions.

 Heavy Ion Collisions.}

Peter FILIP

Institute of Physics, Slovak Academy of Sciences Bratislava 845 11, Slovak Republic

Kent State University
April 10th, 2009

OUTLINE:

- Introduction to Nuclear Deformation
\rightarrow many interesting pieces, oblate, prolate...
- Collisions of deformed nuclei
\rightarrow eccentricity, elliptic flow, fluctuations....
- Conclusions...

Quadrupole deformation: Theoretical Calculation

Moller Chart of Nuclides 2000 Quadrupole Deformation

$$
\mathrm{Ge}-70
$$

Woods-Saxon Density.

$$
\rho_{w}(x, y, z)=\frac{\rho_{o}}{1+e^{\left(r-R_{o}\left(1+\beta_{2} Y_{20}+\beta_{4} Y_{40}\right)\right) / a}}
$$

- Deformation parameters:
quadrupole: $\beta_{2} \rightarrow\left[3 \cos ^{2}(\theta)-1\right] \approx \mathrm{Y}_{20}$
octupole: $\beta_{3} \rightarrow \quad\left[5 \cos ^{3}(\theta)-3 \cos (\theta)\right]$
higher order: $\beta_{4} \rightarrow \quad\left[35 \cos ^{4}(\theta)-30 \cos ^{2}(\theta)+3\right] \approx Y_{40}$
Highest order: $\beta_{6} \rightarrow$ nucl-ex/0106023
- see old ref. Rev.Mod.Phys. 30 pp.498-506 (1958)

Oblate/prolate shape: β_{2}

- $\beta_{2}>0 \rightarrow$ rugby-ball (prolate) shape.
Ne-20, Cu-63, Sm, W, U..
- $\beta_{2}<0 \rightarrow$ oblate (squeezed) shape: $\mathrm{Si}, \mathrm{As}, \mathrm{Ge}, \mathrm{Au}$

$$
\text { Si-28 } \quad \mathrm{Si}-29 \quad \mathrm{Si}-30
$$

$$
\beta_{2}=-0.47 \quad \beta_{2}=-0.3 \quad \beta_{2}=0.0
$$

Higher-order deformation: β_{4}

Octupole deformation: β_{3}

- Pear-shaped deformation
\rightarrow under investigation, unstable to α-decay
- Two candidates: Sm-149 and Rn-222

$$
\left.\left(\beta_{3}=-0.05\right)\right)_{\substack{\text { simpleme Def }}} \quad\left(\beta_{3}=-0.13\right)
$$

Size comparison.

Spherical nuclei $=$ closed shells of nucleon orbitals (magic numbers).
Radius increases as $\mathrm{A}^{1 / 3}$ [assuming constant baryon density].

Shape comparison I.

Ge-70
Sm-154
As-75

Shape comparison II.

W-186

Ga-71

Tm-169

W-186
Ga-71

Tm-169

Other Pictures I.

[Cf-251 in RHIC $=89800$ Years half-life at $100 \mathrm{GeV} / \mathrm{n}$; for $10^{13} /$ beam ≈ 1 decay $/ 6 \mathrm{~s}$]

Other Pictures II.

Но-165 $\rightarrow \leftarrow \mathrm{Pb}-207$
(long-polarized)

Other Pictures III.

$$
\text { Si-28 } \underset{(\mathrm{AGS})}{\rightarrow} \leftarrow \mathrm{Au}-197
$$

EXOTICS.

Dubnium(105)-268 (16hours)
Americium(95)-240m (1ms)

Reality: RHIC Au+Au 200GeV/n

oblate shape ${ }^{[1]}$
$\beta_{2}=-0.13$
spin: $3 / 2$
stable, 100\%
Natural isotope

Au-197 nucleus Deformation?
Yes: has quadrupole moment Q=0.59 barn [Phys.Rev.A73(2006)022510] Prediction β_{2} : [1] P.Moller et al. At. Data Nucl. Data Tables 59 (1995) 185. Experiment: [2] C.Nair et al. (Giant Dipole Resonance ${ }^{197} \mathrm{Au}$) arXiv:08114746.

Other deformed nuclei at RHIC? Yes: Cu-63 \& U-238.

Elliptic flow at RHIC energies:
 \rightarrow origin: the initial spatial asymmetry.

For deformed nuclei \rightarrow initial eccentricity is affected !!! \rightarrow elliptic flow is affected.

Optical Glauber Model ${ }^{*}$

- Using Deformed Woods-Saxon density:

$$
\rho_{w}(x, y, z)=\frac{\rho_{o}}{1+e^{\left(r-R_{o}\left(1+\beta_{2} Y_{20}+\beta_{4} Y_{40}\right)\right) / a}}
$$

- Projections $[\theta, \varphi]$ in transversal plane \rightarrow
- From the overlap of colliding nuclei:
- Baryon density
- $\mathrm{N}_{\text {part: }}$ participant density $\rho_{\text {part }}(x, y)$

- $\mathrm{N}_{\text {coll }}: \rho_{\text {coll }}(x, y)$ binary collisions density
- Obtain eccentricity $\quad \varepsilon=\frac{\sqrt{\left(\sigma_{y}^{2}-\sigma_{x}^{2}\right)^{2}+4 \sigma_{x y}^{2}}}{\sigma_{y}^{2}+\sigma_{x}^{2}}$
- Multiplicity:

$$
d N_{\mathrm{ch}} / d \eta=(1-x) \cdot n_{p p} \frac{N_{\mathrm{part}}}{2}+x \cdot n_{p p} N_{\mathrm{coll}}
$$

* Phys. of Atom. Nucl. 71 (2008) 1609

Distributions $\mathrm{N}_{\text {part }}, \mathrm{N}_{\text {coll }}, \mathrm{N}_{\mathrm{ch}}$ from Opt.GM

Two-component $\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \eta$: Phys.Lett.B507(2001)121; $\boldsymbol{n}_{\boldsymbol{p}}=2.29$ and $\boldsymbol{x}=0.13$

Eccentricity in collisions of prolate nuclei.

- Ho-165 $\left(\beta_{2}=+0.3\right)$

$$
\varepsilon_{\mathrm{part}}=\frac{\sqrt{\left(\sigma_{y}^{2}-\sigma_{x}^{2}\right)^{2}+4 \sigma_{x y}^{2}}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

- Pear-shaped overlaps !

- Fluctuations $\varepsilon\left[\theta^{1}, \varphi^{1} ; \theta^{2}, \varphi^{2}\right]$ at given $[b]$

Technical detail: Random orientation of nucleus.

Random orientation:

$=$ random distribution of points where main axis (spin) crosses the surface of the sphere.

Probability is proportional to the area.
Area dS corresponding to $\mathrm{d} \theta \mathrm{d} \varphi$ is:

$$
\mathrm{dS}=\mathrm{R} \sin (\theta) \mathrm{d} \theta \mathrm{~d} \varphi
$$

$\rightarrow \mathrm{P}(\theta)=\sin (\theta) / 2$ (normalized to 1.)
$\rightarrow \mathrm{P}(\varphi)=$ const. \quad (random φ angle)
\rightarrow angle θ is not random.
Random orientation means random φ, and $\sin (\theta)$ distributed θ angle.

Eccentricity in collisions of oblate nuclei.

Zero eccentricity at $\mathrm{b}=3 \mathrm{fm}$ and non-zero ε for $b=0$ fm

- Au-197 (predicted $\beta_{2}=-0.13$)

Eccentricity fluctuates again!

OBSERVATION:

Deformation of nuclear shape

increases

$\varepsilon \rightarrow \mathrm{V}_{2}=$ Elliptic flow fluctuations.

(at given fixed collision centrality).

What happens with $<\boldsymbol{\varepsilon}>$ due to deformation in UU \& AuAu?

- In noncentral collisions $\langle\varepsilon>$ stays unchanged \rightarrow central coll: Increased $<\varepsilon>$ due to deformation.
+ addtionally, deformation increases eccentricity fluctuations.

UU collisions from Opt.GM: dNch/d η

\rightarrow Cusp in $<\varepsilon>$ for very-central collisions (large $\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \eta$).
Highest multiplicity: $\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \eta$ is observed for longitudinaly polarized, central $\mathrm{b}=0 \mathrm{fm}$ collisions.
\rightarrow eccentricity cusp \leftarrow

Why ($\mathbf{d N c h} / \mathbf{d} \eta)$ sensitive to oriention ?

$\rightarrow \mathrm{dNch} / \mathrm{d} \eta$ depends on orientation due to $\mathrm{NN}_{\text {coll }}$

$$
d N_{\mathrm{ch}} / d \eta=(1-x) \cdot n_{p p} \frac{N_{\mathrm{part}}}{2}+x \cdot n_{p p} N_{\mathrm{coll}}
$$

$\mathrm{N}_{\text {part }}$ is not sensitive to orientation V_{2} [Npart] not interesting.
\rightarrow Study: $\quad \mathbf{V}_{\mathbf{2}}[\mathrm{dNch} / \mathrm{d} \eta]$ (in central collisons)!

Glauber Monte Carlo Simulation*
 [*] QM09 poster (LBNL + JINR)

Eccentricity fluctuations: $\sigma_{\varepsilon}=\sqrt{\sigma_{\beta_{2}}^{2}+\tilde{\sigma}_{\varepsilon}^{2}}$
\rightarrow finite number of interacting nucleons: $\tilde{\sigma}_{\varepsilon}$
\rightarrow ground-state deformation of coll. nuclei: $\sigma_{\beta_{2}}$

Quark Matter 2009

Effects predicted by Optical Glauber Model \rightarrow confirmed.

Comparison of Entropy Density in $\mathrm{Au}+\mathrm{Au}$ vs. $\mathrm{U}+\mathrm{U}$

Entropy density: $\quad \rho_{s}(x, y)=\kappa_{s}\left[\alpha \rho_{\mathrm{part}}(x, y)+(1-\alpha) \rho_{\mathrm{coll}}(x, y)\right]$
PRC72(2005) page 037901 .

β_{4} deformation Parameter for ${ }^{238} \mathrm{U}$

- Moller et al. [1] prediction for ${ }^{238} \mathrm{U}$ is: $\beta_{4}=+0.093$
\rightarrow spatial distribution of nucleons is modified
\rightarrow participant eccentricity is modified
\rightarrow final v_{2} strength can be modified! [hydro calc. needed].
$\mathrm{U}+\mathrm{U}$ participant density in transversal plane [fm- ${ }^{-2}$.

[1] Moller et al. At. Data Nucl. Data Tables 59, 185 (1995)

Polarization of ${ }^{238} \mathrm{U}$ beam ? No way.

Spin of ${ }^{238} U=0^{+}$
Magnetic moment $\mu=0$
Quadrupole moment: unknown.

\rightarrow consider ${ }^{238} \mathrm{U}$ beam unpolarized.

CONCLUSIONS:

- Nuclei collided at AGS/SPS/RHIC are deformed:
\rightarrow Si-28, Cu-63, In-115, Au-197, (U).
- Elliptic flow is affected in deformed nuclei collisions:
\rightarrow eccentricity: $\langle\varepsilon\rangle$ increased in $\mathrm{Au}+\mathrm{Au}$ central + cusp for $\mathrm{Ho}+\mathrm{Ho}$ and $\mathrm{U}+\mathrm{U}$ predicted
\rightarrow fluctuations: $\sigma(\varepsilon)$ increased !
- β_{4} deform. parameter for ${ }^{238} \mathrm{U}$ is important!
- Study of deformation effects is needed to understand properties of partonic matter created at RHIC.

