

Poincaré Invariant Three-Body Scattering at Intermediate Energies

Ch. Elster T. Lin W. Polyzou, W. Glöckle

5/8/2009

Supported by: U.S. DOE, OSC, NERSC

A Few-Body Theorist's view of the Nuclear Chart

3 Nucleon Systems

- •Bound State: ³H ³He
- •Scattering: Elastic Inelastic (Breakup)
- •Energy Scale: $keV \rightarrow MeV \rightarrow GeV$

Challenges in 3N Physics

- Test of nuclear forces in the simplest nuclear environment (over a large energy range!)
 - Two-body forces
 - Genuine three-body forces

Reaction mechanisms

- Examples: deuteron breakup, (p,n) charge exchange, exclusive breakup (specific configurations) ...
- Higher Energy: Lorentz vs. Galilean Invariance
- Check commonly used approximations (e.g. Glauber approach)

Total Cross Section for Neutron-Deuteron Scattering

Relativistic Effects at Higher Energies Computational Challenge:

3N and 4N systems:

- standard treatment based on pw projected momentum space successful (3N scattering up to ≈250 MeV) but rather tedious
- 2N: j_{max} =5, 3N: J_{max} =25/2 \rightarrow 200 `channels'
- Computational maximum today:
- 2N: j_{max}=7, 3N: J_{max}=31/2

 \Rightarrow Solution:

 \Rightarrow NO partial wave decomposition of basis states

Roadmap for 3N problem without PW Scalar NN model | Realistic NN Model

- NN scattering + bound state
- 3N bound state
- 3N bound state + 3NF
- 3N scattering:
- Full Faddeev Calculation
 - Elastic scattering
 - Below and above break-up
 - Break-up

Poincarė Invariant Faddeev Calculations

- NN scattering + deuteron
 - Potentials AV18 and Bonn-B
- Break-up in first order:
 - (p,n) charge exchange

- Max. Energy 500 MeV

- Lorentz kinematics
- Exact Faddeev Calculation
 - NN interactions
 - High energy limits

Three-Body Scattering - General

- Transition operator for elastic scattering
 - $U = PG_0^{-1} + PT$

Transition operator for breakup scattering

$$U_0 = (1 + P)I$$

$$T = tP + tG_0PT$$

Faddeev equation (Multiple Scattering Series)

$$T = tP + tG_0 PtP + \cdots$$

$$1^{\text{st}} \text{ Order in tP}$$

 $t = v + vg_0 t =: NN t$ -matrix $P = P_{12}P_{23} + P_{13}P_{23} = Permutation Operator$

3-Body Transition Amplitude (NR)

$$T |\mathbf{q}_0 \varphi_d\rangle = tP |\mathbf{q}_0 \varphi_d\rangle + tG_0 PT |\mathbf{q}_0 \varphi_d\rangle$$

$$p = \frac{1}{2} (k_2 - k_3)$$
$$q = \frac{2}{3} (k_1 - \frac{1}{2} (k_2 + k_3))$$

The Faddeev Equation in momentum space by using Jacobi Variables

$$\langle \mathbf{pq} | \hat{T} | \mathbf{q}_{0} \varphi_{d} \rangle = \varphi_{d} \left(\mathbf{q} + \frac{1}{2} \mathbf{q}_{0} \right) \hat{t}_{s} \left(\mathbf{p}, \frac{1}{2} \mathbf{q} + \mathbf{q}_{0}, E - \frac{3}{4m} q^{2} \right)$$

$$+ \int d^{3} \mathbf{q}'' \frac{\hat{t}_{s} \left(\mathbf{p}, \frac{1}{2} \mathbf{q} + \mathbf{q}'', E - \frac{3}{4m} q^{2} \right)}{E - \frac{1}{m} \left(q^{2} + q''^{2} + \mathbf{q} \cdot \mathbf{q}'' \right) + i\varepsilon} \frac{\langle \mathbf{q} + \frac{1}{2} \mathbf{q}'', \mathbf{q}'' | \hat{T} | \mathbf{q}_{0} \varphi_{d} \rangle}{E - \frac{3}{4m} q''^{2} - E_{d} + i\varepsilon}$$

 $\hat{t}_s \equiv$ symmetrized 2-body t-matrix

Variables for 3D Calculation

3 distinct vectors in the problem: $\mathbf{q}_0 \mathbf{q} \mathbf{p}$

5 independent variables:

$$p = |\mathbf{p}|$$
, $q = |\mathbf{q}|$

 $x_p = \hat{\mathbf{p}} \cdot \hat{\mathbf{q}}_0 , x_q = \hat{\mathbf{q}} \cdot \hat{\mathbf{q}}_0$ $x_{pq}^{q_0} = (\mathbf{q}_0 \times \mathbf{q}) \cdot (\mathbf{q}_0 \times \mathbf{p})$

q system : $\mathbf{z} \parallel \mathbf{q}$ q₀ system : $\mathbf{z} \parallel \mathbf{q}_0$ Variables invariant under rotation:

freedom to choose coordinate system for numerical calculation

Relativistic Faddeev Calculations

- Context: Poincarė Invariant Quantum Mechanics
 - Poincarė invariance is exact symmetry, realized by a unitary representation of the Poincarė group on a fewparticle Hilbert space
 - Instant form
 - Faddeev equations same operator form but different ingredients
- Kinematics
 - Lorentz transformations between frames
- Dynamics
 - Bakamjian-Thomas Scheme: Mass Operator $M=M_0+V$ replaces Hamiltonian $H=H_0+v$
 - Connect Galilean two-body ν with Poincarė two-body v
 - Construct V := $\sqrt{M^2 + q^2} \sqrt{M_0^2 + q^2}$

Lorentz Kinematics: Phase Space Factors

$$\sigma_{el} = (2\pi)^4 \int d\Omega \frac{E_n^2(q_0)E_d^2(q_0)}{W} |\langle \varphi_d \hat{q} q_0 | U | \varphi_d q_0 \rangle|^2$$
NR: $(2m/3)^2$

$$W = \sqrt{4(m^2 + p^2) + q^2} + \sqrt{m^2 + q^2} = \text{Invariant Mass}$$

$$\sigma_{br} = \frac{(2\pi)^4}{3} \frac{E_n(q_0)E_d(q_0)}{q_0W} \int d\Omega_p d\Omega_q dq \frac{p_u q^2}{4} \sqrt{4(m^2 + p_u^2) + q^2} |\langle \phi_0 | U_0 | \varphi_d q_0 \rangle|^2$$

$$|p_u| = 1/2 \sqrt{W^2 - 3m^2 - 2W} \sqrt{m^2 + q^2}$$

$$\sigma_{br}^{NR} = \frac{(2\pi)^4}{3} \frac{m^2}{3q_0} \int d\Omega_p d\Omega_q dq q^2 \sqrt{mE_{cm} - \frac{3}{4}q^2} |\langle \phi_0 | U_0 | \varphi_d q_0 \rangle|^2$$

Kinematics: Poincaré-Jacobi momenta

Nonrelativistic (Galilei)

$$p = \frac{1}{2}(k_2 - k_3)$$

$$q = \frac{2}{3}(k_1 - \frac{1}{2}(k_2 + k_3))$$

• Relativistic (Lorentz)

$$p = \frac{1}{2}(\mathbf{k}_2 - \mathbf{k}_3) + \frac{\mathbf{k}_2 + \mathbf{k}_3}{2m_{23}} \left(\frac{(\mathbf{k}_2 - \mathbf{k}_3) \cdot (\mathbf{k}_2 + \mathbf{k}_3)}{(E_2 + E_3) + m_{23}} - (E_2 - E_3) \right)$$
$$q = \mathbf{k}_1 + \frac{\mathbf{K}}{M} \left(\frac{\mathbf{k}_1 \cdot \mathbf{K}}{E + M} - E_1 \right)$$

$$E = E_{1} + E_{2} + E_{3}$$

$$K = \mathbf{k}_{1} + \mathbf{k}_{2} + \mathbf{k}_{3}$$

$$M = \sqrt{E^{2} - \mathbf{K}^{2}}$$

$$m_{23} = \sqrt{(E_{2} + E_{3})^{2} - (\mathbf{k}_{2} + \mathbf{k}_{3})^{2}}$$

Kinematics: Poincaré-Jacobi Coordinates

3N c.m. frame: k_1, k_2, k_3 with $k_1 + k_2 + k_3 = K = 0$

Poincarė-Jacobi Coordinates:

$$q = k_{1}$$

$$p = \frac{1}{2}(k_{2} - k_{3}) - \frac{1}{2}(k_{2} + k_{3}) \left(\frac{E_{2} - E_{3}}{E_{2} + E_{3} + \sqrt{(E_{2} + E_{3})^{2} - (k_{2} + k_{3})^{2}}} \right)$$

$$|k_{1}k_{2}k_{3}\rangle = \left| \frac{\partial(Kpq)}{\partial(k_{2}k_{3})} \right|^{\frac{1}{2}} |Kpq\rangle = \frac{E(p)[E(k_{2}) + E(k_{3})]}{2E(k_{2})E(k_{3})} |Kpq\rangle$$

All expressions related to permutations much more complicated
Depend on vector variables => angle dependent

Permutation Operator: $P=P_{12}P_{23}+P_{13}P_{23}$

$$\begin{split} {}_{1} \langle \mathbf{p}' \mathbf{q}' | P | \mathbf{p}'' \mathbf{q}'' \rangle_{1} &= {}_{1} \langle \mathbf{p}' \mathbf{q}' | \mathbf{p}'' \mathbf{q}'' \rangle_{2} + {}_{1} \langle \mathbf{p}' \mathbf{q}' | \mathbf{p}'' \mathbf{q}'' \rangle_{3} \\ &= \hat{N}(\mathbf{q}', \mathbf{q}'') \left[\delta \left(\mathbf{p}' - \mathbf{q}'' - \frac{1}{2} \mathbf{q}' \underline{C}(\mathbf{q}'', \mathbf{q}') \right) \delta \left(\mathbf{p}'' + \mathbf{q}' + \frac{1}{2} \mathbf{q}'' \underline{C}(\mathbf{q}', \mathbf{q}'') \right) \\ &+ \delta \left(\mathbf{p}' + \mathbf{q}'' + \frac{1}{2} \mathbf{q}' \underline{C}(\mathbf{q}'', \mathbf{q}') \right) \delta \left(\mathbf{p}'' - \mathbf{q}' - \frac{1}{2} \mathbf{q}'' \underline{C}(\mathbf{q}', \mathbf{q}'') \right) \right] \end{split}$$

 $q' = 0.65 \, \text{GeV}$

Relativistic kinematics⁻ IA (1st order)

$$T = tP$$
$$U = PG_0^{-1} + PT$$

- Lorentz transformation
 Lab → c.m. frame) (3-bod)
- Phase space factors in cross sections
- Poincarė-Jacobi moment -
- Permutations

Quantum Mechanics

Galilei Invariant:
$$H = \frac{K^2}{2M_g} + h$$
; $h = h_0 + v_{12}^{NR} + v_{13}^{NR} + v_{23}^{NR}$

Poincaré Invariant:

$$H = \sqrt{K^2 + M^2}$$
; $M = M_0 + V_{12} + V_{23} + V_{31}$

$$V_{ij} = M_{ij} - M_0 = \sqrt{(m_{0,ij} + v_{ij})^2 + q_k^2} - \sqrt{m_{0,ij}^2 + q_k^2}$$

Two-body interaction embedded in the 3-particle Hilbert space

$$m_{0,ij} = \sqrt{m_i^2 + p_{ij}^2} + \sqrt{m_j^2 + p_{ij}^2}$$
$$M_0 = \sqrt{m_{0,ij}^2 + q_k^2} + \sqrt{m_k^2 + q_k^2}$$

V_{ij} embedded in the 3-particle Hilbert space

$$V_{ij} = M_{ij} - M_0 = \sqrt{(m_{0,ij} + v_{ij})^2 + q_k^2} - \sqrt{m_{0,ij}^2 + q_k^2}$$

need matrix elements: $\langle \vec{k} | V(\vec{p}) | \vec{k}' \rangle$

$$= v(\vec{k},\vec{k}') + \psi_b(\vec{k})(\sqrt{M_b^2 + p^2} - M_b)\psi_b(\vec{k}') + \frac{1}{\omega - \omega'} \left[(\sqrt{\omega^2 + p^2} - \omega)\Re[t(\vec{k}',\vec{k};\omega)] - (\sqrt{\omega'^2 + p^2} - \omega')\Re[t(\vec{k},\vec{k}';\omega')] \right] + \frac{1}{\omega - \omega'} \left[\mathcal{P} \int d^3k'' \frac{(\sqrt{\omega''^2 + p^2} - \omega'')}{\omega'' - \omega} t(\vec{k},\vec{k}'';\omega'') t^*(\vec{k}',\vec{k}'';\omega'') - \mathcal{P} \int d^3k'' \frac{(\sqrt{\omega''^2 + p^2} - \omega'')}{\omega'' - \omega'} t(\vec{k},\vec{k}'';\omega'') t^*(\vec{k}',\vec{k}'';\omega'') \right].$$

H. Kamada,^{1,*} W. Glöckle,^{2,†} J. Golak,^{2,3,‡} and Ch. Elster^{4,§} PHYSICAL REVIEW C **66**, 044010 (2002)

Two-Body Input: T1-operator embedded in 3-body system

$$T_{1}(p', p; q) = V(p', p; q) + \int d^{3}k'' \frac{V(p', k''; q) T_{1}(k'', p; q)}{\sqrt{(2E(p'))^{2} + q^{2}} - \sqrt{(2E(k''))^{2} + q^{2}} + i\varepsilon}$$

 Obtain fully off-shell matrix elements T₁(k,k',q) from half shell transition matrix elements by

Solving a 1st resolvent type equation:

$$T_{I}(q) = T_{I}(q') + T_{I}(q) [g_{0}(q) - g_{0}(q')] T_{I}(q')$$

- For every single off-shell momentum point
- Proposed in
 - Keister & Polyzou, PRC 73, 014005 (2006)
- Carried out for the first time here [PRC 76, 1014010 (2007)]

Obtain embedded 2N t-matrix $T_1(k,k',z')$ halfshell in 2-body c.m. frame first :

$$\langle \mathbf{k} | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle = \langle \mathbf{k} | V(\mathbf{q}) | \mathbf{p}'^{(-)} \rangle$$

$$= \frac{2(E_{k'} + E_k)}{\sqrt{4E_{k'}^2 + \mathbf{q}^2} + \sqrt{4E_k^2 + \mathbf{q}^2}} t(\mathbf{k}, \mathbf{k}'; 2E_{k'})$$

$$t(\mathbf{k}, \mathbf{k}'; 2E_{k'}) = v(\mathbf{k}, \mathbf{k}') + \int d\mathbf{k}'' \frac{v(\mathbf{k}, \mathbf{k}'')t(\mathbf{k}'', \mathbf{k}'; 2E_{k'})}{E_{k'} - 2\sqrt{m^2 + k''^2} + i\epsilon}$$

Solution of the relativistic 2N LS equation with 2-body potential

Consideration for two-body t-matrix

- Relativistic and non-relativistic t-matrix should give identical observables for determining relativistic effects
- Or two-body t-matrices should be phase-shift equivalent
- Four options:
 - Start from relativistic LS equation
 - natural option employed for NN interactions fit to 1 GeV +
 - If non-relativistic LS equation is used:
 - Refit of parameters (maybe time consuming in practice)
 - Transformation of Kamada-Glöckle PRL 80, 2547 (1998)
 - Transformation of Coester-Piper-Serduke as given in Polyzou PRC 58, 91 (1998)

Phase equivalent 2-body t-matrices: Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975))

• Add interaction to square of non-interacting mass operator $k^2 = u$

$$M^{2} = M_{0}^{2} + u = 4mh \quad \text{with} \quad h \equiv \frac{k^{2}}{m} + \frac{u}{4m} + m$$
$$u = v^{2} + \left\{ M_{0}^{2}, v \right\}$$

- NO need to evaluate v directly, since M, M², h have the same eigenstates
- Relation between half-shell t-matrices

$$\left\langle k' \left| t_R(e(k)) \right| k \right\rangle = \frac{4m}{e(k) + e(k')} \left\langle k' \left| t_{NR}(k'/m) \right| k \right\rangle$$

 Relativistic and nonrelativistic cross sections are identical functions of the invariant momentum k

Total Cross Section for Elastic Scattering:

Unitarity Relation

$$\left\langle \phi \left| U \right| \phi' \right\rangle^* - \left\langle \phi' \left| U \right| \phi \right\rangle = \int d^3 q \left\langle \phi \left| U \right| \phi' \right\rangle^* 2\pi \, i \, \vartheta \left(E - E_q \right) \left\langle \phi_q \left| U \right| \phi \right\rangle$$
$$+ \frac{1}{3} \int d^3 p d^3 q \left\langle \phi_0 \left| U_0 \right| \phi' \right\rangle 2\pi \, i \, \vartheta \left(E - E_{pq} \right) \left\langle \phi_0 \left| U_0 \right| \phi \right\rangle$$

$$-16\pi^{3} \frac{E_{n}(q_{0})E_{d}(q_{0})}{q_{0}W} \operatorname{Im}\left\langle q_{0},1,\varphi_{d}\left|U\right|q_{0}\varphi_{d}\right\rangle = \sigma_{tot} = \sigma_{el} + \sigma_{br}$$

Total Cross Section and Unitarity Relation

E_{lab} GeV	σ_{c}	$_{op}$ [mb]	σ_{tot} [m	nb]	$\sigma_{el} \; [\mathrm{mb}]$	$\sigma_{br} \; [mb]$
0.1		349.4	350.6		273.4	77.2
0.2		195.1	194.6		158.6	36.0
0.5		106.2	106.8		72.2	34.6
0.8		74.2	74.5		46.6	27.9
1.0		62.3	61.8		37.7	24.1
1.2		54.6	55.3		33.0	22.3
1.5		43.7	44.9		26.0	18.9
2.0		33.0	34.0		18.9	15.2
$\sigma_{tot} = \sigma_{el} + \sigma_{br}$						

Faddeev Equation as multiple scattering series

 $T = tP + tG_0PT$ $T = tP + tG_0PtP + \cdots$ $1^{\text{st} \text{ Order or IA}}$

Convergence of the Faddeev Multiple Scattering Series

Convergence of the Faddeev Multiple Scattering Series

Elastic Scattering: Differential Cross Section

Breakup Scattering

Exclusive: Measure energy & angles of two ejected particles
V.Punjabi et al. PRC 38, 2728 (1998) – TRIUMF p+d @ 508 MeV
Outgoing protons are measured in the scattering plane

Exclusive Breakup Scattering (symmetric configuration)

 $E_{lab} = 508 MeV$

(V.Punjabi et al. PRC 38, 2728 (1998)

Exclusive Breakup Scattering

Exclusive Breakup Scattering Space-Star

 $E_{lab} = 508 \text{ MeV}$

Relevance of Study with Model Interaction

Results for Triton Binding Energy

H.Kamada^{*1}, W. Glöckle², H. Witała³, J. Golak³, R. Skibiński³ and W. N. Polyzou⁴ (EFB 20)

		6			ιГ			
	Potential	E_b^{nr}	$E_{b}^{(1)}$	$\Delta^{(1)}$		$E_{b}^{(2)}$	$\Delta^{(2)}$	
	RSC	-7.02	-6.97	0.05		-6.59	0.43	
	CD-Bonn	-8.33	-8.22	0.11		-7.98	0.35	
	Nijmegen II	-7.65	-7.58	0.07		-7.22	0.43	
	m Nijmegen~I	-8.00	-7.90	0.10		-7.71	0.29	
	Nijmegen 93	-7.76	-7.68	0.08		-7.46	0.30	
	AV18	-7.66	-7.59	0.07		-7.23	0.43	
	Exp. (-8.48)							
5-Channel Calculation			CPS			KG		

Triton Binding Energy with CD-Bonn (arXiv:0810.2148)

	NR	R	Δ
5-ch (s-wave)	-8.331	-8.219	0.112
18-ch (jm=2)	-8.220	-8.123	0.107
26-ch (jm=3)	-8.241	-8.143	0.098
34-ch (jm=4)	-8.247	-8.147	0.100
34-ch np+nn	-8.005	-7.916	0.089
34-ch (np+nn+wigner)		-7.914	

Computational Equipment

IBM Cluster 1350 970 dP AMD Opteron (22 TFlop)

Jacquard: 356 dP Opteron Cluster

256 dP Itanium 2 Cluster

Poincaré Invariant Faddeev Calculations

- Kinematics
 - Phase space factors
 - Lorentz Transformation from Lab to c.m. frame
 - Lorentz Transformation of Jacobi Coordinates
 - Always reduces effects of phase-space factors
 - Kinematics determines peak positions in break-up observables
- Dynamics
 - Exact calculation of the two-body interaction embedded in the three-particle Hilbert space
 - The dynamic effects act in general opposite kinematic effects

Poincaré Invariant Faddeev Calculations

- Carried out up to 2 GeV for elastic and breakup scattering
 - Solved Faddeev equation in vector variables = NO partial waves
- Relativistic effects are important at 500 MeV and higher
 - Relativistic total elastic cross section increases up to 10% compared to the non-relativistic
 - Relativistic kinematics determines QFS peak positions in inclusive and exclusive breakup
 - Breakup: Relativistic effects very large dependent on configuration
- Above 800 MeV projectile energy:
 - multiple scattering series converges after ~2 iterations
 - In breakup QFS conditions 1st order calculations sufficient

Poincaré Invariant Faddeev Calculations

- Triton calculations:
 - Difference in binding energy between relativistic and nonrelativistic calculation is ≈0.1 MeV
 - Provided the CPS realization of a relativistic interaction is used.
 - CPS is in a Hamiltonian context the correct way
- Future
 - Systematic studies of selected cross sections & high energy limits
 - Triton: Question about consistent inclusion of 3NF
 - Long term: include Spin

