CLASSICAL ELECTRODYNAMICS II

Homework Set 8 November 4, 2016

1. Consider the electric quadrupole potential,

$$\mathbf{A}_{\mathrm{S}}(\mathbf{r}) = -\frac{\mu_0 k^2 c}{24\pi} \left(\frac{\mathrm{e}^{\mathrm{i}kr}}{r} \right) \left[\mathbf{Q}(\hat{r}) + \hat{r} \int r'^2 \rho(r') d^3 r' \right] .$$

Show explicitly that the corresponding magnetic field in the radiation zone is

$$\mathbf{H} = \mathrm{i}k\hat{r} \times \mathbf{A}_S/\mu_0 \ .$$

2. Consider two inertial frames S and S', which recede from each other with constant velocity $\mathbf{u} = \boldsymbol{\beta} c$. A 4-vector is defined as a set of four real numbers that transforms the same as the set of coordinates $(ct, x, y, z) = (ct, \mathbf{r})$. The Lorentz transformation equations for an arbitrary 4-vector $A = (A_0, \mathbf{A})$ can be written as

$$A'_{0} = \gamma (A_{0} - \boldsymbol{\beta} \cdot \mathbf{A}) ,$$

$$\mathbf{A}'_{\parallel} = \gamma (\mathbf{A}_{\parallel} - \boldsymbol{\beta} A_{0}) ,$$

$$\mathbf{A}'_{\perp} = \mathbf{A}_{\perp} ,$$

where $\mathbf{A} = \mathbf{A}_{\parallel} + \mathbf{A}_{\perp}$, with \mathbf{A}_{\parallel} and \mathbf{A}_{\perp} the components of \mathbf{A} that are parallel and perpendicular to $\boldsymbol{\beta}$, respectively. Use the information given to show that the 3-vector \mathbf{A} transforms under a Lorentz transformation according to

$$\mathbf{A}' = \mathbf{A} + \frac{\gamma - 1}{\beta^2} (\mathbf{A} \cdot \boldsymbol{\beta}) \boldsymbol{\beta} - \gamma \boldsymbol{\beta} A_0.$$

3. Use the general transformation equations for A_0 and \mathbf{A} given in problem 2 to show explicitly that

$$A_0^{\prime 2} - \mathbf{A}^{\prime 2} = A_0^2 - \mathbf{A}^2$$
.

That is, the quantity $A_0^2 - \mathbf{A}^2$ is a *Lorentz scalar* - it has the same value in *all* inertial frames.