CLASSICAL ELECTRODYNAMICS II Homework Set 1 September 18, 2015

1. Consider transverse electromagnetic waves in free space of the form:

$$\mathbf{E} = \mathbf{E}_0(x, y) e^{i(kz - \omega t)} ,$$

$$\mathbf{B} = \mathbf{B}_0(x, y) e^{i(kz - \omega t)} .$$

Find the relation between k and ω , as well as the relation between \mathbf{E}_0 and \mathbf{B}_0 . Also show that \mathbf{E}_0 and \mathbf{B}_0 satisfy the equations for electrostatics and magnetostatics in free space; *i.e.*, show that \mathbf{E}_0 and \mathbf{B}_0 have no divergence and no curl.

- 2. Consider a medium where the macroscopic fields satisfy the constitutive relations, $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$ and $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$, with \mathbf{P} the polarization and \mathbf{M} the magnetization. Determine ρ_b (the density of bound charges) and \mathbf{J}_b (the corresponding current density) in terms of \mathbf{P} and \mathbf{M} such that ρ_b and \mathbf{J}_b satisfy the charge continuity equation and the fields satisfy Maxwell's equations.
- 3. Consider Maxwell's equations when no dielectric or magnetic materials are present. (The equations should be expressed only in terms of the fields **E** and **B** and the sources ρ and **J**.)
 - (a) Determine the behavior of the sources and fields under the operation of charge conjugation (the act in which the signs of all the source charges are reversed: $q \rightarrow q' = -q$).
 - (b) Determine the behavior of the sources and fields under the operation of complete spatial inversion $(\mathbf{r} \rightarrow \mathbf{r}' = -\mathbf{r})$.
 - (c) Determine the behavior of the sources and fields under the operation of time reversal $(t \rightarrow t' = -t)$.