CLASSICAL ELECTRODYNAMICS II

Homework Set 5 October 3, 2014

- 1. A plane wave of frequency ω is incident normally (along \hat{z}) from vacuum on a semi-infinite slab of material with a *complex* index of refraction $n(\omega)$.
 - (a) Show that the ratio of reflected power to incident power is

$$R = \left| \frac{1 - n(\omega)}{1 + n(\omega)} \right|^2.$$

(b) Show that the ratio of transmitted power to incident power is

$$T = \frac{4 \operatorname{Re} n(\omega)}{|1 + n(\omega)|^2}.$$

 $Hint: R \text{ and } T \text{ are the reflection and transmission coefficients, respectively, defined here as$

$$R = \left| \frac{(\mathbf{S}'' \cdot \hat{z})}{(\mathbf{S} \cdot \hat{z})} \right| \qquad T = \left| \frac{(\mathbf{S}' \cdot \hat{z})}{(\mathbf{S} \cdot \hat{z})} \right| ,$$

where S, S', and S'' are the time-averaged Poynting vectors for the incident, reflected, and refracted waves, respectively.

2. Use the dispersion relation,

Re
$$\frac{\epsilon(\omega)}{\epsilon_0} = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\omega' \operatorname{Im} \epsilon(\omega')/\epsilon_0}{\omega'^2 - \omega^2} d\omega'$$
.

to calculate Re $\epsilon(\omega)$, given the imaginary part of $\epsilon(\omega)$ for positive ω as

Im
$$\frac{\epsilon(\omega)}{\epsilon_0} = \lambda \left[\theta(\omega - \omega_1) - \theta(\omega - \omega_2) \right],$$

where $\omega_2 > \omega_1 > 0$. Here $\theta(\tau)$ is the step function defined such that $\theta(\tau) = 0$ for $\tau < 0$ and $\theta(\tau) = 1$ for $\tau > 0$. Sketch the behavior of Im $\epsilon(\omega)$ and the result for Re $\epsilon(\omega)$ as functions of ω .