CLASSICAL ELECTRODYNAMICS I Homework Set 8 April 7, 2017

- 1. A charge distribution has azimuthal symmetry and can be described in spherical coordinates by the charge density $\rho(r, \theta)$.
 - (a) Show that the traceless electric quadrupole moment tensor is diagonal for such a charge distribution; that is, show $Q_{ij} = 0$ for $i \neq j$.
 - (b) Show that the diagonal elements Q_{11} and Q_{22} are proportional to Q_{33} and determine the proportionality constants.
- 2. The potential for a localized charge distribution can be written as a multipole expansion,

$$\Phi(\mathbf{r}) = \sum_{\ell=0}^{\infty} \Phi_{\ell}(\mathbf{r}),$$

where

$$\Phi_{\ell}(\mathbf{r}) = \sum_{m=-\ell}^{\ell} \frac{4\pi}{2\ell + 1} q_{lm} \frac{Y_{\ell m}(\theta, \phi)}{r^{\ell + 1}},$$

with

$$q_{lm} = \int Y_{lm}^*(\theta', \phi') r'^\ell \rho(\mathbf{r}') \ d\tau'.$$

Here $\Phi_{\ell}(\mathbf{r})$ is the potential due to the 2^{ℓ} -pole term. Determine the behavior of the static electric field for a pure 2^{ℓ} -pole distribution under the transformation $\mathbf{r} \to -\mathbf{r}$.

3. Two concentric conducting spheres are centered at the origin. The inner sphere has radius a and carries charge +Q while the outer sphere has radius b and carries charge -Q. The empty space between the spheres is filled with a dielectric with permittivity ϵ_1 for z < 0 ($\pi/2 < \theta < \pi$) and with a dielectric with permittivity ϵ_2 for z > 0 ($0 < \theta < \pi/2$).

- (a) Determine **E** and **D** everywhere between the two spheres.
- (b) Determine the free surface-charge density σ on the inner sphere.
- (c) Determine the capacitance C = Q/V of this system, where V is the potential difference between the inner and outer spherical conductors.