CLASSICAL ELECTRODYNAMICS I Homework Set 4 February 17, 2017

- 1. (a) Consider the two-dimensional problem in which we want to find the potential $\Phi(x, y)$ in the slit defined by the x = 0 and x = aplanes. On the x = 0 plane, $\Phi(0, y) = 0$, and on the x = a plane, $\Phi(a, y) = V \cdot \exp(-b^2 y^2)$. Express the potential in the slit as a Fourier integral. (Integral tables are permitted for the evaluation of the expansion coefficients.)
 - (b) Now suppose that the boundary conditions are the same on both planes; that is, suppose $\Phi(0, y) = \Phi(a, y) = V \cdot \exp(-b^2 y^2)$. Use the results of part (a) to determine the potential $\Phi(x, y)$ in the slit for this case.
- 2. Find the potential $\Phi(x, y, z)$ in an infinitely deep rectangular well, with sides at x = 0, x = a, y = 0, and y = b. The potential is zero on all sides of the well except the bottom side, which lies in the z = 0 plane, where the potential satisfies $\Phi(x, y, 0) = V$.