CLASSICAL ELECTRODYNAMICS I Homework Set 3 February 6, 2015

- 1. A line charge with linear density λ is placed parallel to, and a distance R away from, the axis of a conducting cylinder of radius b held at fixed voltage such that the potential vanishes at infinity. Define a coordinate system with the axis of the cylinder passing through the origin, and with the direction from the origin to the line charge as the x axis.
 - (a) Find the magnitude and position of the image charge(s).
 - (b) Find the potential $\Phi(r, \theta)$ at any point, expressed in polar coordinates.
 - (c) Find the potential, $V = \Phi(b, \theta)$, on the surface of the cylinder.
 - (d) Find the asymptotic form of the potential for $r \gg R$.
 - (e) Find the force (per unit length) on the line charge.
 - (f) Find the induced surface-charge density $\sigma(\theta)$ on the cylinder.
 - (g) Find the asymptotic form of $\sigma(\theta)$ for $R \gg b$.