INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS Homework Set 8 April 6, 2016

- 1. The present ¹⁴C content of organic matter gives it an activity of 15 decays per minute per gram of carbon. Determine the ratio of the number of ¹²C atoms to the number of ¹⁴C atoms that gives rise to this specific activity.
- 2. The mean lifetime of an unstable particle with speed $v = \beta c$ is $\tau = \gamma \tau_0$, where $\gamma = 1/\sqrt{1-\beta^2}$ and τ_0 is the mean lifetime that is measured when the particle is at rest. If the particle has mass m and momentum p, then relativistically, $p = mv\gamma$ and the kinetic energy of the particle (in units where c = 1) is given by $K = \sqrt{p^2 + m^2} - m$. Given that K = 100 MeV, find the mean distance d traveled by each of the following three unstable particles before decay occurs:
 - (a) neutron ($m = 939.6 \text{ MeV}, \tau_0 = 8.9 \times 10^2 \text{ s}$),
 - (b) charged pion (m = 139.6 MeV, $\tau_0 = 2.6 \times 10^{-8}$ s),
 - (c) muon ($m = 105.7 \text{ MeV}, \tau_0 = 2.2 \times 10^{-6} \text{ s}$).
- 3. A sample of a certain element with two naturally occurring isotopes becomes activated by neutron capture. After 1 h in the reactor, it is placed in a counting room, in which the total number of decays in 1 h is recorded at daily intervals. Here is a summary of the recorded data:

Time (d)	No. Decays	Time (d)	No. Decays
0	$102,\!515$	20	2372
1	$79,\!205$	40	1421
2	$61,\!903$	60	1135
3	48,213	80	862
4	$37,\!431$	100	725
5	$29,\!367$	120	551
6	$23,\!511$	140	462
7	$18,\!495$	160	359
8	$14,\!829$	180	265
9	$11,\!853$	200	225
10	$9,\!595$		

From these data, determine the half-lives and initial activities of the two components. What is the element? (*Hint:* Use the handout, Appendix C, for Homework Set 2.)