INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS Homework Set 6 March 16, 2016

- 1. This problem relates to magic numbers.
 - (a) What is Z for the lightest element with *three* stable isotopes? [*Hint:* Use the handout (Appendix C) from homework Set 2.] List the stable isotopes with the same N as this Z.
 - (b) What is Z for the lightest element with *six* stable isotopes? List the stable isotones with the same value N as this Z.
 - (c) The element with the most (10) stable isotopes is tin (Sn), with Z = 50. List the stable isotones with N = 50.
 - (d) The nuclei with the *most* stable isotones are those with N = 82. List the *seven* stable isotones with N = 82.
 - (e) The lightest nuclei with *five* stable isotones are those with N = 20 and N = 28. List the stable isotones with N = 28.
- 2. (a) Draw a simplified shell-model diagram for the 0⁺ ground state of ${\rm ^{12}C.}$

The lowest excited states of ${}^{12}C$ are a 2⁺ state at 4.44 MeV and a 0⁺ state at 7.65 MeV. The lowest 1⁺ state does not occur until 12.71 MeV. Draw a diagram (or diagrams) showing a likely shellmodel interpretation for these low-lying 0⁺ and 2⁺ excited states.

- (b) The low-lying states of ¹³C include the $\frac{1}{2}^{-}$ ground state, a $\frac{1}{2}^{+}$ excited state at 3.09 MeV, a $\frac{3}{2}^{-}$ excited state at 3.68 MeV, and a $\frac{5}{2}^{+}$ excited state at 3.85 MeV. All other excited states have energies above about 7 MeV. Draw diagrams that give a likely shell-model interpretation for each of these four states.
- 3. (a) The low-lying negative-parity states in 43 Ca, 45 Ca, 51 V, and 53 Mn have similar three-particle or three-hole configurations. Identify the dominant configuration for each nucleus. [For example, the low-lying positive-parity states in 18 O have a dominant two-particle configuration given by $(1d_{5/2}^{\nu})^2$.]

(b) Each of these nuclei has a $\frac{7}{2}^{-}$ ground state. Determine what other negative-parity states are allowed by Fermi symmetry. [*Hint*: Use the fact that the three-particle (or three-hole) wave function must be antisymmetric under particle (or hole) interchange.]