INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS Homework Set 4 February 24, 2016

- 1. Consider the deuteron as a proton and a neutron bound in a threedimensional square-well potential of range R and depth V_0 . The radial wave function is given by $u(r) = A \sin k_1 r$ for r < R and by $u(r) = C \exp(-k_2 r)$ for r > R, where $k_1 = \sqrt{2m(V_0 - B)/\hbar^2}$ and $k_2 = \sqrt{2mB/\hbar^2}$. Here R = 2.1 fm, B = 2.22 MeV, and 2m = 939 MeV.
 - (a) Use the continuity of the wave function to prove that

$$A^2 \sin^2 k_1 R = C^2 \exp(-2k_2 R)$$

and use this result to show that

$$A^2 = \frac{2k_2}{1+k_2R}$$

(b) Let $P(r_0)$ denote the fraction of the time that the neutron and proton spend separated by a distance greater than r_0 , where $r_0 \ge R$. Show that we can write

$$P(r_0) = P(R)\xi^n,$$

where $\xi = \exp(-2k_2R)$ and $n = (r_0/R) - 1$. Evaluate $P(r_0)$ numerically for $r_0 = R$, 2R, 3R, 4R, and 5R.

- (c) Show that the expectation value of the potential energy can be written as $\langle V \rangle = -V_0[1 P(R)]$, and evaluate $\langle V \rangle$ numerically.
- (d) Use the fact that $E = -B = \langle T \rangle + \langle V \rangle$ to determine the expectation value of the kinetic energy, $\langle T \rangle$, numerically.
- 2. Consider the ⁴He nucleus as a bound state of two deuterons.
 - (a) Determine all allowed values of orbital angular momentum ℓ for the two deuterons.
 - (b) Suppose that the deuteron-deuteron potential is approximated by

$$V(r) = \alpha \hbar c \cdot \delta(r - R) + v(r),$$

where v(r) is an attractive three-dimensional square-well potential with range R and depth V_0 . The Dirac delta function term in the potential is included to represent the repulsive Coulomb interaction between the two deuterons, and α is the fine-structure constant $(\alpha^{-1} = 137.036)$. We may choose R = 1.7 fm, which is the measured charge radius of ⁴He.

Solve the Schrödinger equation for this potential (assume $\ell = 0$) to find the form of the radial wave function u(r). What value of the energy E should be used in this model to describe the ground state of ⁴He? (*Hint:* It is *not* equal to the binding energy of ⁴He.) Finally, determine the well depth V_0 for this potential.