QUANTUM MECHANICS Homework Set 6 March 13, 2014

1. (a) Suppose that we have two complete sets of orthonormal basis states $\{|\psi_n\rangle\}$ and $\{|\phi_n\rangle\}$, which are related to each other by an operator S according to

$$|\phi_n\rangle = \sum_m S_{nm} |\psi_m\rangle \;.$$

Show that S must be a unitary operator:

$$SS^{\dagger} = S^{\dagger}S = I \; ,$$

where I is the identity operator. Thus, the transformation between the $\{|\psi_n\rangle\}$ and the $\{|\phi_n\rangle\}$ is a *unitary* transformation.

(b) Now suppose that S is related to an operator K by

$$S = (I + \mathrm{i}K)(I - \mathrm{i}K)^{-1}$$

Show that K must be hermitian if S is unitary.

2. We have seen that a plane wave, e^{ikx} , is not an acceptable wave function because it is not normalizable. However, consider the wave function,

$$\psi(x,0) = \begin{cases} A e^{ikx}, & \text{if } -\frac{2\pi n}{k} \le x \le \frac{2\pi n}{k}, \\ 0, & \text{otherwise,} \end{cases}$$

where n is an integer.

- (a) Show that $\psi(x, 0)$ is normalizable and calculate A.
- (b) Calculate the corresponding momentum-space wave function $\Phi(p, 0)$.
- (c) Is $\psi(x, 0)$ an acceptable wave function? If not, explain why.
- 3. (a) Let us define a spatial displacement operator D_x by

$$D_x\psi(x) = \psi(x+a)$$
.

Show that $D_x = e^{ia\hat{p}/\hbar}$, where \hat{p} is the momentum operator. For this reason, \hat{p}/\hbar is called the *generator* of translations in space. *Hint:* Begin by expanding $\psi(x+a)$ in a Taylor series about a = 0. (b) Now define a time displacement operator D_t by

$$D_t\psi(x,t) = \psi(x,t+t_0)$$

Show that $D_t = e^{-it_0 \hat{H}/\hbar}$, where \hat{H} is the Hamiltonian. For this reason, $-\hat{H}/\hbar$ is called the *generator* of translations in time. Note that both D_x and D_t are unitary operators.